• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU2282 The Counting Problem

            Posted on 2007-02-20 15:49 oyjpart 閱讀(2086) 評論(5)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            看看你的心有多細?

            The Counting Problem
            Time Limit:3000MS? Memory Limit:65536K
            Total Submit:741 Accepted:368

            Description
            Given two integers a and b, we write the numbers between a and b, inclusive, in a list. Your task is to calculate the number of occurrences of each digit. For example, if a = 1024 and b = 1032, the list will be

            1024 1025 1026 1027 1028 1029 1030 1031 1032

            there are ten 0's in the list, ten 1's, seven 2's, three 3's, and etc.

            Input
            The input consists of up to 500 lines. Each line contains two numbers a and b where 0 < a, b < 100000000. The input is terminated by a line `0 0', which is not considered as part of the input.

            Output
            For each pair of input, output a line containing ten numbers separated by single spaces. The first number is the number of occurrences of the digit 0, the second is the number of occurrences of the digit 1, etc.

            Sample Input

            1 10
            44 497
            346 542
            1199 1748
            1496 1403
            1004 503
            1714 190
            1317 854
            1976 494
            1001 1960
            0 0
            

            Sample Output

            1 2 1 1 1 1 1 1 1 1
            85 185 185 185 190 96 96 96 95 93
            40 40 40 93 136 82 40 40 40 40
            115 666 215 215 214 205 205 154 105 106
            16 113 19 20 114 20 20 19 19 16
            107 105 100 101 101 197 200 200 200 200
            413 1133 503 503 503 502 502 417 402 412
            196 512 186 104 87 93 97 97 142 196
            398 1375 398 398 405 499 499 495 488 471
            294 1256 296 296 296 296 287 286 286 247
            

            Source
            Shanghai 2004

            我采用的是每一位統(tǒng)計每一個數(shù)字的方法
            我的想法就是 某一位出現(xiàn)某個數(shù)字的次數(shù) 就是其他位可能出現(xiàn)的數(shù)字的總和
            比如1134 第二位出現(xiàn)1就應該是前面的1+后面的34+1(還有00呢) 故是135種
            下面我列出了我的草稿:
            (0代表是0的情況 <代表小于本位數(shù)字 =代表等于本位數(shù)字 >代表大于本位數(shù)字)
            (post代表后面形成的數(shù)字 pre代表前面形成的數(shù)字)
            第一位
            0: 0
            <:本位權(quán)
            =:?? pre+1
            >:? 0
            第K位
            0:??? pre*本位權(quán)
            <:?? (pre+1)*本位權(quán)
            =:?? pre*本位權(quán)+post+1
            >:? pre*本位權(quán)
            最后一位
            0 || <= : pre+1
            > :??????? pre
            注意 如果數(shù)字只有1位 則不能應用第一位規(guī)則 而應該應用最后一位規(guī)則
            我WA了一次這里

            Solution
            //by oyjpArt

            ?

            ?1#include?<stdio.h>
            ?2#include?<math.h>
            ?3#include?<memory.h>
            ?4
            ?5const?int?N?=?10;
            ?6int?w[N],?d[N],?num1[N],?num2[N],?nd;?//??è¨,êy×?,3???′?êy????1,????2,??êy
            ?7
            ?8inline?int?pre(int?pos)?{
            ?9????int?tot?=?0,?i,?base;
            10????for(base?=?1,?i?=?pos-1;?i>=0;?i--)?{
            11????????tot?+=?d[i]*base;
            12????????base?*=?10;
            13????}

            14????return?tot;
            15}

            16
            17inline?int?post(int?pos)?{
            18????int?tot?=?0,?i,?base;
            19????for(base?=?1,?i?=?nd-1;?i>pos;?i--)?{
            20????????tot?+=?d[i]*base;
            21????????base?*=?10;
            22????}

            23????return?tot;
            24}

            25
            26void?cal(int?x,?int?num[])?{
            27????int?base?=?1,?i,?j,?tmp?=?x;
            28????nd?=?(int)ceil(log10(x+1));?//??????êy
            29????if(nd?==?0)?++nd;
            30????for(i?=?nd-1;?i>=0;?i--)?{?//??????ò???μ?è¨?μ?2¢·?à?3???ò???êy
            31????????w[i]?=?base;
            32????????base?*=?10;
            33????????d[i]?=?tmp%10;
            34????????tmp?/=?10;
            35????}

            36????for(i?=?0;?i<nd;?i++)?{?//??óúμúi??
            37????????if(i?==?0?&&?nd?!=?1)??//μúò???ì?êa′|àí?
            38????????????for(j?=?0;?j<=9;?j++)?{?//í3??êy×?j?úi??3???μ?′?êy???í?
            39????????????????if(j?!=?0?&&?j?<?d[i])????????num[j]?+=?w[i];?//±???è¨
            40????????????????else?if(j?==?d[i])????num[j]?+=?post(i)+1;?//′ói+1?aê?D?3éμ?êy×?+1
            41????????????}

            42
            43????????else?if(i?==?nd-1)??//×?oóò???ì?êa′|àí
            44????????????for(j?=?0;?j<=9;?j++)?{
            45????????????????if(j?<=?d[i])???????num[j]?+=?pre(i)+1;?//i?°??D?3éμ?êy×?+1
            46????????????????else????????????????num[j]?+=?pre(i);
            47????????????}

            48
            49????????else????????????//ò?°??é??
            50????????????for(j?=?0;?j<=9;?j++)?{?
            51????????????????if(j?==?0)?{
            52????????????????????if(d[i]?==?0)???num[j]?+=?(pre(i)-1)*w[i]?+?post(i)+1;
            53????????????????????else????????????num[j]?+=?pre(i)*w[i];
            54????????????????}

            55????????????????else?if(j?<?d[i])???num[j]?+=?(pre(i)+1)*w[i];
            56????????????????else?if(j?==?d[i])??num[j]?+=?pre(i)*w[i]?+?post(i)+1;
            57????????????????else????????????????num[j]?+=?pre(i)*w[i];
            58????????????}

            59????}

            60}

            61
            62int?main()?{
            63????int?a,?b,?t,?i;
            64????while(scanf("%d%d",?&a,?&b),?a+b)?{
            65????????memset(num1,?0,?sizeof(num1));
            66????????memset(num2,?0,?sizeof(num2));
            67????????if(a?>?b)?{
            68????????????t?=?a;
            69????????????a?=?b;
            70????????????b?=?t;
            71????????}

            72????????if(a?>?0)?cal(a-1,?num1);
            73????????cal(b,?num2);
            74????????printf("%d",?num2[0]-num1[0]);
            75????????for(i?=?1;?i<10;?i++)
            76????????????printf("?%d",?num2[i]-num1[i]);
            77????????putchar('\n');
            78????}

            79????return?0;
            80}

            81
            這個注釋不知道怎么拷出來就變成亂碼了 請高手指點

            Feedback

            # re: PKU2282 The Counting Problem   回復  更多評論   

            2007-02-20 16:24 by 萬連文
            不知道pku是什么意思???

            # re: PKU2282 The Counting Problem   回復  更多評論   

            2007-02-20 21:20 by oyjpart
            Peking University
            Here we imply Peking University ACM Online Judge

            # re: PKU2282 The Counting Problem   回復  更多評論   

            2007-02-24 16:31 by sheep
            這里是utf8的,大概你輸入的是gb2312所以就亂馬了

            # re: PKU2282 The Counting Problem   回復  更多評論   

            2007-02-26 21:46 by asp.j
            是ANSI吧?

            # re: PKU2282 The Counting Problem   回復  更多評論   

            2010-06-03 02:04 by Jackal
            第一位等于的情況應該是第一位post+1,不是pre+1
            亚洲国产精品久久久久婷婷软件| 久久无码国产| 国产福利电影一区二区三区久久老子无码午夜伦不 | 中文精品久久久久人妻不卡| 久久99热这里只有精品国产| 好久久免费视频高清| 久久久久久国产精品无码下载| 国产91色综合久久免费| 日韩人妻无码一区二区三区久久99| 99久久免费国产精精品| 99久久精品免费看国产一区二区三区| 亚洲国产天堂久久综合网站| 久久精品国产男包| 久久无码人妻精品一区二区三区| 久久久久国产精品熟女影院| 久久综合九色欧美综合狠狠| 91精品免费久久久久久久久| 奇米影视7777久久精品| 久久精品桃花综合| 久久免费国产精品| 久久久精品波多野结衣| 国产精品视频久久| 久久99精品国产一区二区三区| 亚洲精品国产美女久久久| 亚洲欧美久久久久9999| 色欲综合久久躁天天躁| 热综合一本伊人久久精品| 久久AAAA片一区二区| 国产精品女同一区二区久久| 51久久夜色精品国产| 色综合久久久久网| 精品视频久久久久| 国内精品久久久久影院网站| 久久国产成人精品国产成人亚洲| 亚洲综合久久综合激情久久| 亚洲国产成人久久精品动漫| 中文字幕成人精品久久不卡| 亚洲国产精品久久久久婷婷软件| 91久久成人免费| 久久久久综合国产欧美一区二区 | 久久线看观看精品香蕉国产|