• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 70, 文章 - 0, 評論 - 9, 引用 - 0
            數據加載中……

            Protocol Buffers (協議緩沖) 之 Language Guide

            Assigning Tags
            As you can see, each field in the message definition has a unique numbered tag. These tags are used to identify your fields in the message binary format, and should not be changed once your message type is in use. Note that tags with values in the range 1 through 15 take one byte to encode. Tags in the range 16 through 2047 take two bytes. So you should reserve the tags 1 through 15 for very frequently occurring message elements. Remember to leave some room for frequently occurring elements that might be added in the future.
            The smallest tag number you can specify is 1, and the largest is 229 - 1, or 536,870,911. You also cannot use the numbers 19000 though 19999 (FieldDescriptor::kFirstReservedNumber through FieldDescriptor::kLastReservedNumber), as they are reserved for the Protocol Buffers implementation - the protocol buffer compiler will complain if you use one of these reserved numbers in your .proto.

            For historical reasons, repeated fields of basic numeric types aren't encoded as efficiently as they could be. New code should use the special option [packed=true] to get a more efficient encoding. For example:
            repeated int32 samples = 4 [packed=true];

            謹慎使用required描述符,因為在以后的擴展中,很難去掉該字段。建議全部使用optional和repeated來實現。

            Adding Comments
            To add comments to your .proto files, use C/C++-style // syntax.

            int32, sint32, int64, sint64
            sint32, sint64支持負數
            更多:

            .proto Type Notes C++ Type Java Type
            double double double
            float float float
            int32 Uses variable-length encoding. Inefficient for encoding negative numbers – if your field is likely to have negative values, use sint32 instead. int32 int
            int64 Uses variable-length encoding. Inefficient for encoding negative numbers – if your field is likely to have negative values, use sint64 instead. int64 long
            uint32 Uses variable-length encoding. uint32 int[1]
            uint64 Uses variable-length encoding. uint64 long[1]
            sint32 Uses variable-length encoding. Signed int value. These more efficiently encode negative numbers than regular int32s. int32 int
            sint64 Uses variable-length encoding. Signed int value. These more efficiently encode negative numbers than regular int64s. int64 long
            fixed32 Always four bytes. More efficient than uint32 if values are often greater than 228. uint32 int[1]
            fixed64 Always eight bytes. More efficient than uint64 if values are often greater than 256. uint64 long[1]
            sfixed32 Always four bytes. int32 int
            sfixed64 Always eight bytes. int64 long
            bool bool boolean
            string A string must always contain UTF-8 encoded or 7-bit ASCII text. string String
            bytes May contain any arbitrary sequence of bytes. string ByteString


            Optional Fields And Default Values
            If the default value is not specified for an optional element, a type-specific default value is used instead: for strings, the default value is the empty string. For bools, the default value is false. For numeric types, the default value is zero. For enums, the default value is the first value listed in the enum's type definition.

            Enumerations
            You can define enums within a message definition, as in the above example, or outside – these enums can be reused in any message definition in your .proto file. You can also use an enum type declared in one message as the type of a field in a different message, using the syntax MessageType.EnumType.

            Importing Definitions
            In the above example, the Result message type is defined in the same file as SearchResponse – what if the message type you want to use as a field type is already defined in another .proto file?
            You can use definitions from other .proto files by importing them. To import another .proto's definitions, you add an import statement to the top of your file:
            import "myproject/other_protos.proto";
            The protocol compiler searches for imported files in a set of directories specified on the protocol compiler command line using the -I/--import_path flag. If no flag was given, it looks in the directory in which the compiler was invoked.

            Updating A Message Type
            If an existing message type no longer meets all your needs. It's very simple to update message types without breaking any of your existing code. Just remember the following rules:
            Don't change the numeric tags for any existing fields.
            Any new fields that you add should be optional or repeated. This means that any messages serialized by code using your "old" message format can be parsed by your new generated code, as they won't be missing any required elements. You should set up sensible default values for these elements so that new code can properly interact with messages generated by old code. Similarly, messages created by your new code can be parsed by your old code: old binaries simply ignore the new field when parsing. However, the unknown fields are not discarded, and if the message is later serialized, the unknown fields are serialized along with it – so if the message is passed on to new code, the new fields are still available. Note that preservation of unknown fields is currently not available for Python.
            Non-required fields can be removed, as long as the tag number is not used again in your updated message type (it may be better to rename the field instead, perhaps adding the prefix "OBSOLETE_", so that future users of your .proto can't accidentally reuse the number).
            A non-required field can be converted to an extension and vice versa, as long as the type and number stay the same.
            int32, uint32, int64, uint64, and bool are all compatible – this means you can change a field from one of these types to another without breaking forwards- or backwards-compatibility. If a number is parsed from the wire which doesn't fit in the corresponding type, you will get the same effect as if you had cast the number to that type in C++ (e.g. if a 64-bit number is read as an int32, it will be truncated to 32 bits).
            sint32 and sint64 are compatible with each other but are not compatible with the other integer types.
            string and bytes are compatible as long as the bytes are valid UTF-8.
            Embedded messages are compatible with bytes if the bytes contain an encoded version of the message.
            fixed32 is compatible with sfixed32, and fixed64 with sfixed64.
            Changing a default value is generally OK, as long as you remember that default values are never sent over the wire. Thus, if a program receives a message in which a particular field isn't set, the program will see the default value as it was defined in that program's version of the protocol. It will NOT see the default value that was defined in the sender's code.

            Extensions
            a.proto:
            message Foo {
              // ...
              extensions 100 to 199;
            }
            b.proto:
            import "a.proto"
            extend Foo {
              optional int32 bar = 126;
            }
            Similarly, the Foo class defines templated accessors HasExtension(), ClearExtension(), GetExtension(), MutableExtension(), and AddExtension(). All have semantics matching the corresponding generated accessors for a normal field.

            Defining Services
            RPC (Remote Procedure Call) 遠程過程調用


            FAQ
            1  問題:執行protoc.exe產生的代碼編譯出錯。
                描述:當跨目錄生成代碼時(用到import "xxx/aaa.proto";),執行protoc.exe --cpp_out=. test.proto,產生的代碼.cc里有::protobuf_AddDesc....,這個函數中總是多了個xxx(即那個目錄名),導致編譯失敗。
                解決:同一個項目里執行protoc.exe的目錄不要改變,與該項目的Makefile在同一個目錄下。
            如項目在E:\workspace\test\qt\test2,那么執行:protoc.exe -I=/e/workspace/test/qt/test2/ --cpp_out=/e/workspace/test/qt/test2/ /e/workspace/test/qt/test2/protobuf/personalmain/LPersonalMainCategory.proto

            posted on 2011-01-26 09:19 seahouse 閱讀(1421) 評論(1)  編輯 收藏 引用 所屬分類: 數據

            評論

            # re: Protocol Buffers (協議緩沖) 之 Language Guide  回復  更多評論   

            protobuf_AddDesc...我也遇到了
            2012-05-23 10:24 | 秒大刀
            亚洲国产小视频精品久久久三级 | 久久国语露脸国产精品电影| 亚洲精品国产成人99久久| 亚洲天堂久久精品| 久久99精品国产麻豆婷婷| 久久热这里只有精品在线观看| 久久天天躁狠狠躁夜夜躁2014| 亚洲欧美成人综合久久久| segui久久国产精品| 伊人久久综合成人网| 国产高清美女一级a毛片久久w| 久久久久亚洲精品无码网址 | 伊人久久大香线蕉AV一区二区| 国产成人精品综合久久久| 99久久精品国产综合一区| 精产国品久久一二三产区区别| 国产精品对白刺激久久久| 亚洲精品NV久久久久久久久久 | 久久―日本道色综合久久| 一本色道久久88精品综合 | 综合人妻久久一区二区精品| 欧美激情精品久久久久| 人妻精品久久无码区| 久久久久久国产a免费观看黄色大片| 99久久成人国产精品免费| 久久99久国产麻精品66| 九九热久久免费视频| 久久精品视频网| 91精品国产高清久久久久久91 | 久久精品国产亚洲Aⅴ蜜臀色欲| 久久天堂电影网| 久久99国产乱子伦精品免费| 亚洲va久久久噜噜噜久久天堂| 亚洲国产成人精品91久久久 | 久久久久久国产a免费观看黄色大片 | 久久这里都是精品| 2021国产成人精品久久| 久久精品国产影库免费看| 久久国产欧美日韩精品| 久久精品人妻中文系列| 久久久久国产精品嫩草影院|