• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217972
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include? < iostream >
            using ? namespace ?std;
            const ? int ?MAXN? = ? 200001 ;

            class ?UFset
            {
            public :
            ????
            int ?parent[MAXN];
            ????UFset();
            ????
            int ?Find( int );
            ????
            void ?Union( int ,? int );
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            - 1 ,? sizeof (parent));
            }


            int ?UFset::Find( int ?x)
            {
            ????
            if ?(parent[x]? < ? 0 )
            ????????
            return ?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            = ?Find(parent[x]);
            ????????
            return ?parent[x];
            ????}
            // ?壓縮路徑
            }


            void ?UFset::Union( int ?x,? int ?y)
            {
            ????
            int ?pX? = ?Find(x);
            ????
            int ?pY? = ?Find(y);
            ????
            int ?tmp;
            ????
            if ?(pX? != ?pY)
            ????
            {
            ????????tmp?
            = ?parent[pX]? + ?parent[pY];? // ?加權合并
            ???????? if ?(parent[pX]? > ?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            = ?pY;
            ????????????parent[pY]?
            = ?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            = ?pX;
            ????????????parent[pX]?
            = ?tmp;
            ????????}

            ????}

            }


            int ?f[(MAXN + 1 ) * 3 ]? = ? { 0 } ;
            int ?n,?m;

            void ?initTree()
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]?
            = ?n;
            ????????c?
            = ?c? * ? 2 ;
            ????????r?
            = ?(l? + ?r)? / ? 2 ;
            ????}

            ????f[c]?
            = ?n; // 葉子初始化
            }


            void ?insertTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            ++ ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            ++ ; // 葉子增加1
            }


            void ?delTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            -- ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            -- ; // 葉子減少1
            }


            int ?searchTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????mid?
            = ?(l? + ?r)? / ? 2 ;
            ????????
            if ?(k? <= ?f[ 2 * c + 1 ])
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -= ?f[ 2 * c + 1 ];
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????
            return ?l;
            }


            int ?main()
            {
            ????
            int ?i,?j;
            ????
            int ?x,?y;
            ????
            int ?k;
            ????
            int ?l,?r;
            ????
            int ?cmd;
            ????
            int ?px,?py;
            ????
            int ?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            " %d%d " ,? & n,? & m);
            ????initTree();
            ????
            for ?(i = 0 ;?i < m;?i ++ )
            ????
            {
            ????????scanf(
            " %d " ,? & cmd);
            ????????
            if ?(cmd? == ? 0 )
            ????????
            {
            ????????????scanf(
            " %d%d " ,? & x,? & y);
            ????????????px?
            = ?UFS.Find(x);
            ????????????py?
            = ?UFS.Find(y);
            ????????????
            if ?(px? != ?py)
            ????????????
            {
            ????????????????tx?
            = ? - UFS.parent[px];
            ????????????????ty?
            = ? - UFS.parent[py];
            ????????????????tz?
            = ?tx? + ?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            " %d " ,? & k);
            ????????????printf(
            " %d\n " ,?searchTree(k));
            ????????}

            ????}

            ????
            return ? 0 ;
            }
            posted on 2006-09-06 13:28 閱讀(816) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 13:24 A3
            可否講解一下線段樹部分  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 17:47 
            把區間劃出來, 節點(非葉子), 表示該區間里面含有多少個元素。
            如果 n = 10;
            而集合大小分別是 1, 1, 2, 6;

            則 區間(1-10) = 4; 區間(1-5) = 3;

            就這樣用線段樹動態維護每次集合合并后的集合大小。

            初始化(1-10) = 10;
            因為開始時, 集合大小為1, 1, 1, 1, 1, 1, 1, 1, 1, 1  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 19:53 Optimistic
            偶的第一次呢 靜待。。。  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 22:23 
            +U ^_^  回復  更多評論
              
            亚洲乱亚洲乱淫久久| 久久婷婷色综合一区二区| 久久久综合九色合综国产| 久久黄色视频| 97久久婷婷五月综合色d啪蜜芽| 久久久噜噜噜www成人网| 91久久国产视频| 五月丁香综合激情六月久久| 国产精品欧美久久久久无广告| 亚洲一区精品伊人久久伊人| 久久被窝电影亚洲爽爽爽| 亚洲综合久久夜AV | 麻豆精品久久久一区二区| 18岁日韩内射颜射午夜久久成人| 中文字幕久久欲求不满| 亚洲AV伊人久久青青草原| 久久免费视频网站| 久久99热这里只有精品国产| 久久久久久久97| 国产A三级久久精品| 精品熟女少妇av免费久久| 伊人色综合久久天天人手人婷| 久久亚洲精品无码播放| yellow中文字幕久久网| 69久久精品无码一区二区| 久久久久亚洲AV成人片 | 国产亚洲美女精品久久久| 久久99热只有频精品8| 久久夜色精品国产噜噜噜亚洲AV | 久久久久亚洲AV片无码下载蜜桃| 久久久久99精品成人片三人毛片| 久久香蕉国产线看观看乱码| 国产一区二区三区久久精品| 久久亚洲AV成人出白浆无码国产 | 久久综合偷偷噜噜噜色| 三级韩国一区久久二区综合| 色99久久久久高潮综合影院| yy6080久久| 久久久无码人妻精品无码| 久久精品国产99国产电影网 | 亚洲国产精久久久久久久|