• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年4月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217854
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Antenna Placement
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:380 Accepted:125

            Description
            The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

            Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

            Input
            On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

            Output
            For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

            Sample Input

            2
            7 9
            ooo**oooo
            **oo*ooo*
            o*oo**o**
            ooooooooo
            *******oo
            o*o*oo*oo
            *******oo
            10 1
            *
            *
            *
            o
            *
            *
            *
            *
            *
            *
            

            Sample Output

            17
            5

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

            myCode:

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?INF? = ? 1 ? << ? 28 ;

            int ?n,?r,?c;
            int ?e[ 11 ]? = ? { 1 ,? 2 ,? 4 ,? 8 ,? 16 ,? 32 ,? 64 ,? 128 ,? 256 ,? 512 ,? 1024 } ;
            char ?m[ 50 ][ 20 ];
            int ?d[ 50 ][ 1024 ];
            int ?b[ 20 ];
            int ?cc[ 20 ];
            int ?ss;

            void ?Try( int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?i = 0 ;?i < c;?i ++ )? {
            ????????????k?
            += ?b[i]? * ?e[i];
            ????????}

            ????????
            if ?(d[ 0 ][k]? == ? - 1 ? || ?d[ 0 ][k]? > ?s)
            ????????????d[
            0 ][k]? = ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(m[ 0 ][x]? == ? ' o ' )? {
            ????????Try(x
            + 1 ,?s);
            ????}
            ? else ? if ?(m[ 0 ][x]? == ? ' * ' )? {
            ????????
            int ?t1? = ?b[x],?t2? = ?b[x + 1 ],?t3? = ?s;
            ????????b[x]?
            = ? 1 ;?b[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????Try(x
            + 2 ,?s);
            ????????b[x]?
            = ?t1;?b[x + 1 ]? = ?t2;?s? = ?t3;
            ????????
            if ?(r? != ? 1 ? || ?m[ 0 ][x]? == ? ' o ' )?Try(x + 1 ,?s);
            ????}
            ??
            }


            void ?DFS( int ?i,? int ?x,? int ?s)
            {
            ????
            if ?(x? >= ?c)? {
            ????????
            int ?k? = ? 0 ;
            ????????
            for ?( int ?j = 0 ;?j < c;?j ++ )? {
            ????????????k?
            += ?cc[j]? * ?e[j];
            ????????}

            ????????
            if ?(d[i][k]? == ? - 1 ? || ?d[i][k]? > ?ss? + ?s)
            ????????????d[i][k]?
            = ?ss? + ?s;
            ????????
            return ?;
            ????}

            ????
            if ?(b[x]? == ? 0 )? {
            ????????
            if ?(m[i - 1 ][x]? == ? ' * ' )? {
            ????????????cc[x]?
            = ? 1 ;?s? += ? 1 ;
            ????????????DFS(i,?x
            + 1 ,?s);
            ????????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}

            ????????}

            ????}
            ? else ? {
            ????????????
            if ?(m[i][x]? == ? ' * ' )? {
            ????????????????
            int ?t1? = ?cc[x],?t2? = ?cc[x + 1 ],?t3? = ?s;
            ????????????????cc[x]?
            = ? 1 ;??cc[x + 1 ]? = ? 1 ;?s? += ? 1 ;
            ????????????????
            if ?(b[x + 1 ]? == ? 0 ? && ?m[i - 1 ][x + 1 ]? == ? ' * ' )
            ????????????????????s?
            += ? 1 ;
            ????????????????DFS(i,?x
            + 2 ,?s);
            ????????????????cc[x]?
            = ?t1;?cc[x + 1 ]? = ?t2;?s? = ?t3;
            ????????????????
            if ?(i? != ?r - 1 ? || ?m[i][x]? == ? ' o ' )?DFS(i,?x + 1 ,?s);
            ????????????}
            ? else ? if ?(m[i][x]? == ? ' o ' )? {
            ????????????????DFS(i,?x
            + 1 ,?s);
            ????????????}
            ??????
            ????}

            }


            void ?init()
            {
            ????memset(d[
            0 ],? - 1 ,? sizeof (d[ 0 ]));
            ????memset(b,?
            0 ,? sizeof (b));
            ????Try(
            0 ,? 0 );
            }


            void ?Solve()?
            {
            ????
            int ?i,?j,?k;
            ????init();
            ????
            for ?(i = 0 ;?i < r - 1 ;?i ++ )? {
            ????????memset(d[i
            + 1 ],? - 1 ,? sizeof (d[i + 1 ]));
            ????????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????????
            if ?(d[i][k]? != ? - 1 )? {
            ????????????????
            int ?t? = ?k,?j? = ? 0 ,?kk? = ? 0 ;
            ????????????????memset(b,?
            0 ,? sizeof (b));
            ????????????????memset(cc,?
            0 ,? sizeof (cc));
            ????????????????
            while ?(t? != ? 0 )? {
            ????????????????????b[j
            ++ ]? = ?t? % ? 2 ;
            ????????????????????t?
            /= ? 2 ;
            ????????????????}

            ????????????????ss?
            = ?d[i][k];
            ????????????????DFS(i
            + 1 ,? 0 ,? 0 );
            ????????????}

            ????????}

            ????}

            ????
            int ?ans? = ?INF;
            ????
            for ?(k = 0 ;?k < e[c];?k ++ )? {
            ????????
            if ?(d[r - 1 ][k]? != ? - 1 ? && ?d[r - 1 ][k]? < ?ans)? {
            ????????????ans?
            = ?d[r - 1 ][k];
            ????????}

            ????}

            ????cout?
            << ?ans? << ?endl;
            }


            int ?main()
            {?
            ????cin?
            >> ?n;
            ????
            while ?(n -- ? != ? 0 )? {
            ????????cin?
            >> ?r? >> ?c;
            ????????
            for ?( int ?i = 0 ;?i < r;?i ++ )?cin? >> ?m[i];
            ????????Solve();
            ????}

            ????system(
            " pause " );
            ????
            return ? 0 ;
            }


            ghost_wei大牛的code,? 放出來供大家學習,? 用了滾動數組優化, 而且位運算用得出神入化:)
            #include<iostream.h>
            #include?
            <fstream.h>
            const?int?k2[11]={1,2,4,8,16,32,64,128,256,512,1024};
            int?n,m,c[2][1024];
            char?d[40][10];
            inline?
            void?min(int?&i,int?j)
            {
            ????
            if?(i>j)?i=j;
            }

            void?work()
            {
            ????
            int?i,j,km,k,e7,e8,l,t,ans;
            ????km
            =k2[m];
            ????
            for?(i=0;i<km;i++)?c[0][i]=100000;
            ????c[
            0][0]=0;
            ????e7
            =0;?e8=1;
            ????
            for?(i=0;i<n;i++)
            ????
            {
            ????????
            for?(j=0;j<km;j++)?c[e8][j]=100000;
            ????????
            for?(j=1;j<m;j++)
            ????????????
            if?(d[i][j]=='*')
            ????????????????
            for?(k=0;k<km;k++)
            ????????????????????min(c[e7][k
            |k2[j]|k2[j-1]],c[e7][k]+1);
            ????????
            for?(k=0;k<km;k++)
            ????????
            {
            ????????????l
            =0;?t=0;
            ????????????
            for?(j=0;j<m;j++)?
            ????????????????
            if?(!(k&k2[j])&&d[i][j]=='*')
            ????????????????
            {
            ????????????????????l
            +=k2[j];
            ????????????????????t
            ++;
            ????????????????}

            ????????????min(c[e8][l],c[e7][k]
            +t);
            ????????}

            ????????e7
            =e7^1;?e8=e8^1;
            ????}

            ????ans
            =100000;
            ????
            for?(k=0;k<km;k++)
            ????????min(ans,c[e7][k]);
            ????cout
            <<ans<<endl;
            }

            int?main()
            {
            ????
            int?tc,cas,i,j;
            ????cin
            >>tc;
            ????
            for?(cas=1;cas<=tc;cas++)
            ????
            {
            ????????cin
            >>n>>m;
            ????????
            for?(i=0;i<n;i++)
            ????????????
            for(j=0;j<m;j++)
            ????????????????cin
            >>d[i][j];
            ????????work();
            ????}

            ????
            return?0;
            }

            posted on 2006-10-18 17:29 閱讀(2134) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: 狀態壓縮DP, pku3020[未登錄] 2007-04-30 11:16 Leon
            Ghost的算法真是精辟,只是狀態數組定義的空間可能會不夠,代碼的line 30  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2007-06-30 10:35 姜雨生
            真是太好了
            以后多向你請教  回復  更多評論
              
            # re: 狀態壓縮DP, pku3020[未登錄] 2008-07-02 08:22 菜鳥
            大牛解釋一下這一段吧:
            for (i=0;i<n;i++)
            {
            for (j=0;j<km;j++) c[e8][j]=100000;
            for (j=1;j<m;j++)
            if (d[i][j]=='*')
            for (k=0;k<km;k++)
            min(c[e7][k|k2[j]|k2[j-1]],c[e7][k]+1);
            for (k=0;k<km;k++)
            {
            l=0; t=0;
            for (j=0;j<m;j++)
            if (!(k&k2[j])&&d[i][j]=='*')
            {
            l+=k2[j];
            t++;
            }
            min(c[e8][l],c[e7][k]+t);
            }
            e7=e7^1; e8=e8^1;
            }
              回復  更多評論
              
            # re: 狀態壓縮DP, pku3020 2008-08-04 22:56 ecnu
            二分匹配做的。。關鍵是狀態壓縮不會。5555...  回復  更多評論
              
            久久久亚洲AV波多野结衣| 欧洲人妻丰满av无码久久不卡| 国产精品视频久久久| 久久久精品人妻一区二区三区蜜桃| 久久精品国产网红主播| 91精品国产91久久久久久| 国产精品久久久久久久久久影院| 日韩精品久久久久久久电影蜜臀| 久久中文字幕一区二区| 亚洲v国产v天堂a无码久久| 久久香蕉超碰97国产精品| 久久久亚洲精品蜜桃臀| 97久久久精品综合88久久| 模特私拍国产精品久久| 国产91色综合久久免费| 99精品国产免费久久久久久下载| 成人国内精品久久久久影院VR| 久久久久无码精品国产| 日韩电影久久久被窝网| 国产精品欧美久久久久无广告| 亚洲精品乱码久久久久久中文字幕 | 久久久久久久久波多野高潮| 欧美日韩中文字幕久久伊人| 久久精品人人做人人妻人人玩| 少妇久久久久久被弄到高潮| 久久97精品久久久久久久不卡| 久久中文骚妇内射| 一本久道久久综合狠狠爱| 伊人久久大香线蕉综合热线| 亚洲国产成人精品91久久久 | 精品久久久久中文字幕日本| 久久亚洲精品无码aⅴ大香| 久久久久一级精品亚洲国产成人综合AV区| 99re这里只有精品热久久| 欧美亚洲色综久久精品国产| 婷婷综合久久中文字幕蜜桃三电影| 香蕉久久永久视频| 色天使久久综合网天天| 久久久久波多野结衣高潮| 久久久无码人妻精品无码| 99久久99这里只有免费费精品|