• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年3月>
            25262728123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊(cè)

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 218039
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            開始時(shí)候粗心,狀態(tài)轉(zhuǎn)移時(shí)候k寫成k-1了,查了n久.

            The Mailboxes Manufacturers Problem
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:299 Accepted:227

            Description

            In the good old days when Swedish children were still allowed to blowup their fingers with fire-crackers, gangs of excited kids would plague certain smaller cities during Easter time, with only one thing in mind: To blow things up. Small boxes were easy to blow up, and thus mailboxes became a popular target. Now, a small mailbox manufacturer is interested in how many fire-crackers his new mailbox prototype can withstand without exploding and has hired you to help him. He will provide you with k (1 ≤ k ≤ 10) identical mailbox prototypes each fitting up to m (1 ≤ m ≤ 100) crackers. However, he is not sure of how many firecrackers he needs to provide you with in order for you to be able to solve his problem, so he asks you. You think for a while and then say, “Well,if I blow up a mailbox I can’t use it again, so if you would provide me with only k = 1 mailboxes, I would have to start testing with 1 cracker, then 2 crackers, and so on until it finally exploded. In the worst case, that is if it does not blow up even when filled with m crackers, I would need 1 + 2 + 3 + … + m = m × (m + 1) ? 2 crackers. If m = 100 that would mean more than 5000 fire-crackers!” “That’s too many,” he replies. “What if I give you more than k = 1 mailboxes? Can you find a strategy that requires less crackers?”

            Can you? And what is the minimum number of crackers that you should ask him to provide you with?

            You may assume the following:

            1. If a mailbox can withstand x fire-crackers, it can also withstand x ? 1 fire-crackers.
            2. Upon an explosion, a mailbox is either totally destroyed (blown up) or unharmed, which means that it can be reused in another test explosion.

            Note: If the mailbox can withstand a full load of m fire-crackers, then the manufacturer will of course be satisfied with that answer. But otherwise he is looking for the maximum number of crackers that his mailboxes can withstand.

            Input

            The input starts with a single integer N (1 ≤ N ≤ 10) indicating the number of test cases to follow. Each test case is described by a line containing two integers: k and m, separated by a single space.

            Output

            For each test case print one line with a single integer indicating the minimum number of fire-crackers that is needed, in the worst case, in order to figure out how many crackers the mailbox prototype can withstand.

            Sample Input

            4
            1 10
            1 100
            3 73
            5 100

            Sample Output

            55
            5050
            382
            495

            Source
            Svenskt M?sterskap i Programmering/Norgesmesterskapet 2002

            #include?<iostream>
            using?namespace?std;

            const?int?INF?=?1?<<?28;

            int?d[11][101][101];
            int?sum(int?i,?int?j)?{
            ????
            int?ret?=?0,?k;
            ????
            for?(k=i;?k<=j;?k++)?ret?+=?k;
            ????return?ret;
            }

            int?max(int?a,?int?b)?{
            ????return?a?
            >?b???a?:?b;
            }


            int?main()?{
            ????
            int?caseTime;?
            ????
            int?i,?j,?k,?t,?K,?M,?l;
            ????scanf(
            "%d",?&caseTime);
            ????
            ????
            while?(caseTime--)?{
            ????????scanf(
            "%d%d",?&K,?&M);
            ????????
            for?(i=1;?i<=M;?i++)?{
            ????????????
            for?(j=i;?j<=M;?j++)?{
            ????????????????d[
            1][i][j]?=?sum(i,?j);
            ????????????}
            ????????}
            ????????
            for?(k=2;?k<=K;?k++)?{
            ????????????
            for?(l=0;?l<M;?l++)?{
            ????????????????
            for?(i=1;?i+l<=M;?i++)?{
            ????????????????????j?
            =?i?+?l;
            ????????????????????
            if?(i?==?j)?{
            ????????????????????????d[k][i][j]?
            =?i;
            ????????????????????????continue;
            ????????????????????}
            ????????????????????d[k][i][j]?
            =?INF;
            ????????????????????
            for?(t=i;?t<=j;?t++)?{
            ????????????????????????
            int?tmp;
            ????????????????????????
            if?(t?==?i)?tmp?=?d[k][i+1][j];
            ????????????????????????
            else?if?(t?==?j)?tmp?=?d[k-1][i][j-1];
            ????????????????????????
            else?tmp?=?max(d[k-1][i][t-1],?d[k-1][t+1][j]);
            ????????????????????????tmp?
            =?max(d[k-1][i][t-1],?d[k][t+1][j]);
            ????????????????????????
            if?(d[k][i][j]?>?t?+?tmp)?d[k][i][j]?=?t?+?tmp;
            ????????????????????}
            ????????????????}
            ????????????}
            ????????}
            ????????printf(
            "%d\n",?d[K][1][M]);
            ????}

            ????return?
            0;
            }
            posted on 2007-03-26 00:41 閱讀(2214) 評(píng)論(2)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2904 3維dp 2007-03-27 16:31 litianze
            我是一個(gè)剛剛開始做acm題的菜鳥,望大哥幫幫忙,可以介紹一下解決的思想嗎?小弟先謝謝了!  回復(fù)  更多評(píng)論
              
            # re: pku2904 3維dp 2007-03-27 23:04 
            dp[k][i][j]表示k個(gè)郵筒時(shí)候放鞭炮數(shù)為i..j時(shí)候的最優(yōu)值

            轉(zhuǎn)移方程為
            dp[k][i][j] = min{t+max(d[k-1][i][t-1],d[k][t+1][j])};

            狀態(tài)轉(zhuǎn)移時(shí)候就是考慮選t個(gè)鞭炮放時(shí)候爆或不爆  回復(fù)  更多評(píng)論
              
            亚洲人AV永久一区二区三区久久| 性做久久久久久久久浪潮| 国产综合久久久久| 一本大道加勒比久久综合| 久久中文字幕精品| 午夜不卡888久久| 久久精品国产男包| 韩国三级中文字幕hd久久精品 | 99久久精品免费国产大片| 亚洲国产精品成人AV无码久久综合影院| 一日本道伊人久久综合影| 精品国产福利久久久| 亚洲伊人久久精品影院| 亚洲&#228;v永久无码精品天堂久久 | 亚洲欧美日韩久久精品第一区| 狠狠色丁香久久婷婷综合五月 | 亚洲av成人无码久久精品| 久久久久无码中| 中文字幕成人精品久久不卡 | 久久久久免费视频| yellow中文字幕久久网| 狠狠色丁香久久婷婷综合五月| 精品综合久久久久久97| 99久久这里只精品国产免费| 久久国产一片免费观看| 66精品综合久久久久久久| 国产精品久久久久天天影视| 亚洲国产另类久久久精品小说| 亚洲欧美日韩久久精品| 亚洲午夜无码AV毛片久久| 久久亚洲高清综合| 女同久久| 久久精品卫校国产小美女| 一本色道久久HEZYO无码| 亚洲国产成人乱码精品女人久久久不卡 | 国产成人无码久久久精品一| 亚洲精品无码专区久久久| 99久久综合狠狠综合久久| 伊人久久综在合线亚洲2019| 精品99久久aaa一级毛片| 亚洲精品无码久久久|