青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

MyMSDN

MyMSDN記錄開發新知道

boost::tuple

boost::tuple<derived> tup4;
boost::tuple<base> tup5;
tup5 = tup4;
tup4.get<0>().test();
tup5.get<0>().test(); // 丟失多態性
derived d; boost::tuple<derived*> tup6(&d); boost::tuple<base*> tup7; tup7 = tup6; tup6.get<0>()->test(); tup7.get<0>()->test(); // 恢復多態性(方法1) boost::tuple<derived&> tup8(d); boost::tuple<base&> tup9(tup8);
// tup9 = tup8; 不能使用該方法,因為無法對引用賦值。
tup8.get<0>().test(); tup9.get<0>().test(); // 恢復多態性(方法2)
/*
 * tuple.cpp
 *
 *  Created on: 2010-3-25
 *      Author: GoCool
 */
#include <stdlib.h>
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include "../header/baseClass.h"

using namespace std;
class X {
  X();
public:
  X(std::string){}
};
class Y {
  Y(const Y&);
public:
  Y(){}
};
class A {
};
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
void f(int i);

void cut_off_rule(void);
int main(void){
    // add a new tuple
    boost::tuple<int,double,std::string>   triple(42, 3.14, "My first tuple!");
    int a = triple.get<0>();
    ++a;
    cout << a << endl;
    cout << triple << endl;

    cut_off_rule();

    boost::tuple<int, double> pair = boost::make_tuple(21, 22.5);
    cout << pair << endl;

    cut_off_rule();

    int pair_element_1 = -1;
    double pair_element_2 = -1;
    boost::tie(pair_element_1, pair_element_2) = pair;

    cout << pair_element_1 << "," << pair_element_2 << endl;

    cut_off_rule();

    boost::tuple<int,std::string,derived> tup1(-5,"Tuples");
    boost::tuple<unsigned int,std::string,base> tup2;
    tup2=tup1;
    tup2.get<2>().test();
    std::cout << "Interesting value: " << tup2.get<0>() << '\n';
    const boost::tuple<double,std::string,base> tup3(tup2);
    // Description    Resource    Path    Location    Type
    // assignment of read-only location    tuple.cpp    boost_tuple/src    45    C/C++ Problem
    // tup3.get<0>()=3.14;

    cut_off_rule();

    boost::tuple<X,X,X> obj = boost::tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")); // ok

    cut_off_rule();

    double dNum = 5;
    boost::tuple<double&> numTuple(dNum);               // ok

    // boost::tuple<double&>(dNum+3.14);          // error: cannot initialize
                                    // non-const reference with a temporary

    boost::tuple<const double&>(dNum+3.14);    // ok, but dangerous:
                                    // the element becomes a dangling reference
    cut_off_rule();

    // char arr[2] = {'a', 'b'};
    // boost::tuple<char[2]>(arr); // error, arrays can not be copied
    // boost::tuple<char[2], Y>(arr, Y()); // error, neither arrays nor Y can be copied

    boost::tuple<char[2], Y>();       // ok

    cut_off_rule();

    boost::tuple<void (*)(int)> pFTuple1 = boost::make_tuple(&f);
    pFTuple1.get<0>()(10);

    boost::tuple<void (*)(int)> pFTuple2 = boost::make_tuple(boost::ref(f));
    pFTuple2.get<0>()(20);

    boost::tuple<void (&)(int)> pFTuple3(f);
    pFTuple3.get<0>()(30);

    boost::tuple<boost::tuple<void (&)(int)> > pFTuple4(f);
    pFTuple4.get<0>().get<0>()(40);

    cut_off_rule();

    // boost::tuple<int, char> stdPairToTuple = std::make_pair(1, 'a');

    cut_off_rule();

    boost::tuple<std::string, int, A> t1(std::string("same?"), 2, A());
    boost::tuple<std::string, long> t2(std::string("same?"), 2);
    boost::tuple<std::string, long> t3(std::string("different"), 3);
    // t1 == t2;        // true

    cut_off_rule();

    int i; char c;
    boost::tie(i, c) = std::make_pair(1, 'a');
    cout << i << " " << c << endl;

    cut_off_rule();

    boost::tie(boost::tuples::ignore, c) = std::make_pair(1, 'a');
    cout << c << endl;

    cut_off_rule();

    int myX = -1;
    double myY = -2;
    boost::tuple<int, double> f2(2);
    boost::tie(myX, myY) = f2; // #2
    cout << "myX = " << myX << ", myY = " <<myY << endl;
}
void cut_off_rule(void) {
    cout << "-----------------------------------" << endl;
}

void f(int i) {
    cout << "f(" << i << ")" << endl;
}


tuple是boost庫中一個類似標準std::pair庫庫,但pair只能支持兩種元素,而tuple則可以支持大于兩種的。

更多詳解:http://www.boost.org/doc/libs/1_42_0/libs/tuple/doc/tuple_users_guide.html

以下內容直接引自原文:


 

Boost C++ LibrariesBoost C++ Libraries

“...one of the most highly regarded and expertly designed C++ library projects in the world.” — Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

C++ 
Boost

The Boost Tuple Library

A tuple (or n-tuple) is a fixed size collection of elements. Pairs, triples, quadruples etc. are tuples. In a programming language, a tuple is a data object containing other objects as elements. These element objects may be of different types.

Tuples are convenient in many circumstances. For instance, tuples make it easy to define functions that return more than one value.

Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs. Unfortunately C++ does not. To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.

Table of Contents

  1. Using the library
  2. Tuple types
  3. Constructing tuples
  4. Accessing tuple elements
  5. Copy construction and tuple assignment
  6. Relational operators
  7. Tiers
  8. Streaming
  9. Performance
  10. Portability
  11. Acknowledgements
  12. References
More details

Advanced features (describes some metafunctions etc.).

Rationale behind some design/implementation decisions.

Using the library

To use the library, just include:

#include "boost/tuple/tuple.hpp"

Comparison operators can be included with:

#include "boost/tuple/tuple_comparison.hpp"

To use tuple input and output operators,

#include "boost/tuple/tuple_io.hpp"

Both tuple_io.hpp and tuple_comparison.hpp include tuple.hpp.

All definitions are in namespace ::boost::tuples, but the most common names are lifted to namespace ::boost with using declarations. These names are: tuple, make_tuple, tie and get. Further, ref and cref are defined directly under the ::boost namespace.

Tuple types

A tuple type is an instantiation of the tuple template. The template parameters specify the types of the tuple elements. The current version supports tuples with 0-10 elements. If necessary, the upper limit can be increased up to, say, a few dozen elements. The data element can be any C++ type. Note that void and plain function types are valid C++ types, but objects of such types cannot exist. Hence, if a tuple type contains such types as elements, the tuple type can exist, but not an object of that type. There are natural limitations for element types that cannot be copied, or that are not default constructible (see 'Constructing tuples' below).

For example, the following definitions are valid tuple instantiations (A, B and C are some user defined classes):

tuple<int>
tuple<double&, const double&, const double, double*, const double*>
tuple<A, int(*)(char, int), B(A::*)(C&), C>
tuple<std::string, std::pair<A, B> >
tuple<A*, tuple<const A*, const B&, C>, bool, void*>

Constructing tuples

The tuple constructor takes the tuple elements as arguments. For an n-element tuple, the constructor can be invoked with k arguments, where 0 <= k <= n. For example:

tuple<int, double>() 
tuple<int, double>(1)
tuple<int, double>(1, 3.14)

If no initial value for an element is provided, it is default initialized (and hence must be default initializable). For example.

class X {
X();
public:
X(std::string);
};

tuple<X,X,X>() // error: no default constructor for X
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok

In particular, reference types do not have a default initialization:

tuple<double&>()                // error: reference must be 
// initialized explicitly

double d = 5;
tuple<double&>(d) // ok

tuple<double&>(d+3.14) // error: cannot initialize
// non-const reference with a temporary

tuple<const double&>(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference

Using an initial value for an element that cannot be copied, is a compile time error:

class Y { 
Y(const Y&);
public:
Y();
};

char a[10];

tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
tuple<char[10], Y>(); // ok

Note particularly that the following is perfectly ok:

Y y;
tuple<char(&)[10], Y&>(a, y);

It is possible to come up with a tuple type that cannot be constructed. This occurs if an element that cannot be initialized has a lower index than an element that requires initialization. For example: tuple<char[10], int&>.

In sum, the tuple construction is semantically just a group of individual elementary constructions.

The make_tuple function

Tuples can also be constructed using the make_tuple (cf. std::make_pair) helper functions. This makes the construction more convenient, saving the programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}

By default, the element types are deduced to the plain non-reference types. E.g.:

void foo(const A& a, B& b) { 
...
make_tuple(a, b);

The make_tuple invocation results in a tuple of type tuple<A, B>.

Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied. Therefore, the programmer can control the type deduction and state that a reference to const or reference to non-const type should be used as the element type instead. This is accomplished with two helper template functions: ref and cref. Any argument can be wrapped with these functions to get the desired type. The mechanism does not compromise const correctness since a const object wrapped with ref results in a tuple element with const reference type (see the fifth example below). For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple<const A&, B>
make_tuple(ref(a), b); // creates tuple<A&, B>
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
make_tuple(cref(ca)); // creates tuple<const A&>
make_tuple(ref(ca)); // creates tuple<const A&>

Array arguments to make_tuple functions are deduced to reference to const types by default; there is no need to wrap them with cref. For example:

make_tuple("Donald", "Daisy");

This creates an object of type tuple<const char (&)[7], const char (&)[6]> (note that the type of a string literal is an array of const characters, not const char*). However, to get make_tuple to create a tuple with an element of a non-const array type one must use the ref wrapper.

Function pointers are deduced to the plain non-reference type, that is, to plain function pointer. A tuple can also hold a reference to a function, but such a tuple cannot be constructed with make_tuple (a const qualified function type would result, which is illegal):

void f(int i);
...
make_tuple(&f); // tuple<void (*)(int)>
...

volnet:
boost::tuple<void (&)(int)> pFTuple3(f);

pFTuple3.get<0>()(30);

tuple<tuple<void (&)(int)> > a(f) // ok
make_tuple(f); // not ok

Accessing tuple elements

Tuple elements are accessed with the expression:

t.get<N>()

or

get<N>(t)

where t is a tuple object and N is a constant integral expression specifying the index of the element to be accessed. Depending on whether t is const or not, get returns the Nth element as a reference to const or non-const type. The index of the first element is 0 and thus N must be between 0 and k-1, where k is the number of elements in the tuple. Violations of these constraints are detected at compile time. Examples:

double d = 2.7; A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A&> ct = t;
...
int i = get<0>(t); i = t.get<0>(); // ok
int j = get<0>(ct); // ok
get<0>(t) = 5; // ok
get<0>(ct) = 5; // error, can't assign to const
...
double e = get<1>(t); // ok
get<1>(t) = 3.14; // ok
get<2>(t) = A(); // error, can't assign to const
A aa = get<3>(t); // error: index out of bounds
...
++get<0>(t); // ok, can be used as any variable

Note! The member get functions are not supported with MS Visual C++ compiler. Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier. Hence, all get calls should be qualified as: tuples::get<N>(a_tuple) when writing code that should compile with MSVC++ 6.0.

Copy construction and tuple assignment

A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible. Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable. For example:

class A {};
class B : public A {};
struct C { C(); C(const B&); };
struct D { operator C() const; };
tuple<char, B*, B, D> t;
...
tuple<int, A*, C, C> a(t); // ok
a = t; // ok

In both cases, the conversions performed are: char -> int, B* -> A* (derived class pointer to base class pointer), B -> C (a user defined conversion) and D -> C (a user defined conversion).

Note that assignment is also defined from std::pair types:

tuple<float, int> a = std::make_pair(1, 'a');

volnet:(Eclipse with MinGW g++
conversion from `std::pair<int, char>' to non-scalar type `boost::tuples::tuple<float, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>' requested

Relational operators

Tuples reduce the operators ==, !=, <, >, <= and >= to the corresponding elementary operators. This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well. The equality operators for two tuples a and b are defined as:

  • a == b iff for each i: ai == bi
  • a != b iff exists i: ai != bi

The operators <, >, <= and >= implement a lexicographical ordering.

Note that an attempt to compare two tuples of different lengths results in a compile time error. Also, the comparison operators are "short-circuited": elementary comparisons start from the first elements and are performed only until the result is clear.

Examples:

tuple<std::string, int, A> t1(std::string("same?"), 2, A());
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
tuple<std::string, long, A> t3(std::string("different"), 3, A());

bool operator==(A, A) { std::cout << "All the same to me..."; return true; }

t1 == t2; // true
t1 == t3; // false, does not print "All the..."

Tiers

Tiers are tuples, where all elements are of non-const reference types. They are constructed with a call to the tie function template (cf. make_tuple):

int i; char c; double d; 
...
tie(i, c, a);

The above tie function creates a tuple of type tuple<int&, char&, double&>. The same result could be achieved with the call make_tuple(ref(i), ref(c), ref(a)).

A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:

int i; char c; double d; 
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout << i << " " << c << " " << d;

This code prints 1 a 5.5 to the standard output stream. A tuple unpacking operation like this is found for example in ML and Python. It is convenient when calling functions which return tuples.

The tying mechanism works with std::pair templates as well:

int i; char c;
tie(i, c) = std::make_pair(1, 'a');
Ignore

There is also an object called ignore which allows you to ignore an element assigned by a tuple. The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that ignore is under the tuples subnamespace):

char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');

Streaming

The global operator<< has been overloaded for std::ostream such that tuples are output by recursively calling operator<< for each element.

Analogously, the global operator>> has been overloaded to extract tuples from std::istream by recursively calling operator>> for each element.

The default delimiter between the elements is space, and the tuple is enclosed in parenthesis. For Example:

tuple<float, int, std::string> a(1.0f,  2, std::string("Howdy folks!");

cout << a;

outputs the tuple as: (1.0 2 Howdy folks!)

The library defines three manipulators for changing the default behavior:

  • set_open(char) defines the character that is output before the first element.
  • set_close(char) defines the character that is output after the last element.
  • set_delimiter(char) defines the delimiter character between elements.

Note, that these manipulators are defined in the tuples subnamespace. For example:

cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a; 

outputs the same tuple a as: [1.0,2,Howdy folks!]

The same manipulators work with operator>> and istream as well. Suppose the cin stream contains the following data:

(1 2 3) [4:5]

The code:

tuple<int, int, int> i;
tuple<int, int> j;

cin >> i;
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
cin >> j;

reads the data into the tuples i and j.

Note that extracting tuples with std::string or C-style string elements does not generally work, since the streamed tuple representation may not be unambiguously parseable.

Performance

All tuple access and construction functions are small inlined one-liners. Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes. Particularly, with a decent compiler there is no performance difference between this code:

class hand_made_tuple { 
A a; B b; C c;
public:
hand_made_tuple(const A& aa, const B& bb, const C& cc)
: a(aa), b(bb), c(cc) {};
A& getA() { return a; };
B& getB() { return b; };
C& getC() { return c; };
};

hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();

and this code:

tuple<A, B, C> t(A(), B(), C());
t.get<0>(); t.get<1>(); t.get<2>();

Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.

Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using non-const reference parameters as a mechanism for returning multiple values from a function. For example, suppose that the following functions f1 and f2 have equivalent functionalities:

void f1(int&, double&);
tuple<int, double> f2();

Then, the call #1 may be slightly faster than #2 in the code below:

int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2

volnet:
int myX = -1;
double myY = -2;
boost::tuple<int, double> f2(2);
boost::tie(myX, myY) = f2; // #2
cout << "myX = " << myX << ", myY = " <<myY << endl;

See [1, 2] for more in-depth discussions about efficiency.

Effect on Compile Time

Compiling tuples can be slow due to the excessive amount of template instantiations. Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the hand_made_tuple class above. However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable. Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently. With the same test programs, memory consumption of compiling increased between 22% to 27%. See [1, 2] for details.

Portability

The library code is(?) standard C++ and thus the library works with a standard conforming compiler. Below is a list of compilers and known problems with each compiler:

Compiler
Problems

gcc 2.95
-

edg 2.44
-

Borland 5.5
Can't use function pointers or member pointers as tuple elements

Metrowerks 6.2
Can't use ref and cref wrappers

MS Visual C++
No reference elements (tie still works). Can't use ref and cref wrappers

Acknowledgements

Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the library. The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.

References

[1] J?rvi J.: Tuples and multiple return values in C++, TUCS Technical Report No 249, 1999.

[2] J?rvi J.: ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism, TUCS Technical Report No 267, 1999.

[3] J?rvi J.:Tuple Types and Multiple Return Values, C/C++ Users Journal, August 2001.


Last modified 2003-09-07

? Copyright Jaakko J?rvi 2001. Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies. This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.



 

posted on 2010-03-25 17:46 volnet 閱讀(1722) 評論(0)  編輯 收藏 引用 所屬分類: C/C++

特殊功能
 
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美日韩精品综合| 亚洲国产另类久久精品| 亚洲日本视频| 欧美在线免费看| 日韩一级黄色大片| 欧美激情1区2区| 亚洲国产高清视频| 欧美**人妖| 久久九九精品| 国产午夜亚洲精品不卡| 亚洲欧美国产高清| 亚洲少妇最新在线视频| 欧美三区在线视频| 午夜精品美女自拍福到在线| 激情成人综合网| 久久精品理论片| 亚洲精品免费一二三区| 久久se精品一区精品二区| 国产精品一区二区久久久| 亚洲一卡久久| 亚洲一区3d动漫同人无遮挡| 国产精品免费福利| 久久精品欧美日韩| 久久精品视频亚洲| 亚洲精品美女在线观看| 亚洲精品在线一区二区| 欧美日韩色综合| 亚洲午夜精品视频| 亚洲综合精品一区二区| 激情综合自拍| 亚洲欧洲在线视频| 国产精品九九久久久久久久| 欧美一区三区三区高中清蜜桃| 久久国产福利国产秒拍| 最新成人av在线| 中日韩在线视频| 黄色一区二区三区| 日韩一级在线观看| 国产综合色在线| 亚洲三级免费观看| 国产精品午夜国产小视频| 久久最新视频| 欧美三级午夜理伦三级中文幕 | 国产精品婷婷午夜在线观看| 欧美一区二粉嫩精品国产一线天| 亚洲一区二区三区四区视频| 欧美一区二区福利在线| 最新国产成人在线观看| 一本色道久久综合| 狠久久av成人天堂| 夜夜爽99久久国产综合精品女不卡| 国产精品免费aⅴ片在线观看| 老司机久久99久久精品播放免费| 欧美日韩ab片| 葵司免费一区二区三区四区五区| 欧美日韩直播| 免费在线观看成人av| 欧美色中文字幕| 蜜臀久久久99精品久久久久久 | 国产精品99久久久久久白浆小说| 午夜亚洲福利| 亚洲一区二区av电影| 久久亚洲综合| 久久国产精品99精品国产| 欧美日韩福利| 欧美激情1区2区3区| 国产色产综合产在线视频| 99精品视频一区二区三区| 亚洲日本国产| 久久婷婷蜜乳一本欲蜜臀| 欧美一区二区高清| 欧美三区在线观看| 亚洲精品社区| 亚洲精品在线三区| 久久综合狠狠综合久久激情| 久久av一区二区三区漫画| 欧美日韩精品| 亚洲精品国精品久久99热| 亚洲电影免费观看高清| 欧美在线日韩| 久久成年人视频| 国产精品嫩草久久久久| 一区二区欧美日韩| 亚洲午夜精品视频| 国产精品xxx在线观看www| 99re国产精品| 亚洲一区亚洲| 国产精品美女一区二区| 亚洲欧美成aⅴ人在线观看| 欧美一区二区三区久久精品茉莉花| 国产精品hd| 国产精品99久久久久久人| 亚洲精品永久免费精品| 欧美精品一区二区三区蜜臀| 亚洲欧洲另类| 亚洲视频每日更新| 国产精品免费小视频| 欧美不卡高清| 久久久久国产一区二区三区四区| 国产日产亚洲精品| 欧美一二三视频| 久久久久免费| 最新日韩精品| 欧美日韩亚洲视频一区| 99精品视频一区| 亚洲欧美一区二区三区在线| 欧美日韩午夜| 亚洲欧美日韩成人| 久久综合久久综合久久综合| 伊人一区二区三区久久精品| 久久久久91| 亚洲精品一区中文| 欧美日韩免费一区二区三区| 亚洲精品日韩在线| 欧美一区二区黄| 亚洲第一页在线| 欧美高清在线观看| 亚洲一区久久久| 久热精品视频在线| 夜夜精品视频| 国产欧美精品在线| 久久视频国产精品免费视频在线| 欧美激情亚洲综合一区| 在线亚洲欧美专区二区| 国产色综合久久| 蜜臀av在线播放一区二区三区| 亚洲精品国产系列| 欧美在线免费看| 亚洲欧洲一区二区天堂久久| 国产精品国产| 免费在线观看日韩欧美| 亚洲欧美国产77777| 亚洲国产激情| 久久成人免费电影| 亚洲乱码国产乱码精品精98午夜 | 亚洲第一页中文字幕| 欧美体内she精视频| 久久精品中文字幕免费mv| 一本大道av伊人久久综合| 蜜桃av噜噜一区| 性做久久久久久久久| 亚洲美女免费精品视频在线观看| 国产欧美韩日| 欧美日韩亚洲天堂| 久久免费精品视频| 亚洲欧美激情诱惑| 亚洲另类黄色| 欧美激情一区| 欧美成人精品福利| 久久亚洲私人国产精品va媚药| 亚洲一区二区三区国产| 亚洲精品久久久久久久久久久 | 午夜宅男欧美| 艳女tv在线观看国产一区| 激情婷婷欧美| 国产网站欧美日韩免费精品在线观看 | 亚洲国产精品第一区二区| 国产精自产拍久久久久久| 欧美日韩精品一本二本三本| 免费观看成人| 久久最新视频| 久久国产精品一区二区三区四区| 亚洲图片你懂的| 一区二区三区四区五区在线| 亚洲黄一区二区三区| 欧美不卡视频一区| 蜜桃av一区二区三区| 蜜桃av噜噜一区| 欧美va天堂| 免费久久精品视频| 久久夜色精品国产欧美乱极品 | 亚洲一区免费网站| 亚洲一区二区免费| 亚洲天堂网在线观看| 亚洲影院高清在线| 亚洲尤物视频在线| 欧美亚洲一区| 欧美一级午夜免费电影| 亚洲一区二区三区涩| 亚洲系列中文字幕| 亚洲专区一区二区三区| 亚洲欧美日韩区| 久久av资源网| 久久先锋影音av| 欧美成人r级一区二区三区| 欧美插天视频在线播放| 欧美激情欧美激情在线五月| 亚洲欧洲日产国产网站| 日韩一级在线观看| 亚洲欧美精品| 久久久精品一品道一区| 欧美成人日韩| 欧美视频网址| 国产欧美日韩综合一区在线观看| 国产麻豆一精品一av一免费| 黄色av成人| 99视频在线精品国自产拍免费观看 | 国产精品日韩高清| 国产麻豆91精品| 狠狠色丁香婷婷综合久久片|