青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

MyMSDN

MyMSDN記錄開(kāi)發(fā)新知道

boost::tuple

boost::tuple<derived> tup4;
boost::tuple<base> tup5;
tup5 = tup4;
tup4.get<0>().test();
tup5.get<0>().test(); // 丟失多態(tài)性
derived d; boost::tuple<derived*> tup6(&d); boost::tuple<base*> tup7; tup7 = tup6; tup6.get<0>()->test(); tup7.get<0>()->test(); // 恢復(fù)多態(tài)性(方法1) boost::tuple<derived&> tup8(d); boost::tuple<base&> tup9(tup8);
// tup9 = tup8; 不能使用該方法,因?yàn)闊o(wú)法對(duì)引用賦值。
tup8.get<0>().test(); tup9.get<0>().test(); // 恢復(fù)多態(tài)性(方法2)
/*
 * tuple.cpp
 *
 *  Created on: 2010-3-25
 *      Author: GoCool
 */
#include <stdlib.h>
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include "../header/baseClass.h"

using namespace std;
class X {
  X();
public:
  X(std::string){}
};
class Y {
  Y(const Y&);
public:
  Y(){}
};
class A {
};
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
void f(int i);

void cut_off_rule(void);
int main(void){
    // add a new tuple
    boost::tuple<int,double,std::string>   triple(42, 3.14, "My first tuple!");
    int a = triple.get<0>();
    ++a;
    cout << a << endl;
    cout << triple << endl;

    cut_off_rule();

    boost::tuple<int, double> pair = boost::make_tuple(21, 22.5);
    cout << pair << endl;

    cut_off_rule();

    int pair_element_1 = -1;
    double pair_element_2 = -1;
    boost::tie(pair_element_1, pair_element_2) = pair;

    cout << pair_element_1 << "," << pair_element_2 << endl;

    cut_off_rule();

    boost::tuple<int,std::string,derived> tup1(-5,"Tuples");
    boost::tuple<unsigned int,std::string,base> tup2;
    tup2=tup1;
    tup2.get<2>().test();
    std::cout << "Interesting value: " << tup2.get<0>() << '\n';
    const boost::tuple<double,std::string,base> tup3(tup2);
    // Description    Resource    Path    Location    Type
    // assignment of read-only location    tuple.cpp    boost_tuple/src    45    C/C++ Problem
    // tup3.get<0>()=3.14;

    cut_off_rule();

    boost::tuple<X,X,X> obj = boost::tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")); // ok

    cut_off_rule();

    double dNum = 5;
    boost::tuple<double&> numTuple(dNum);               // ok

    // boost::tuple<double&>(dNum+3.14);          // error: cannot initialize
                                    // non-const reference with a temporary

    boost::tuple<const double&>(dNum+3.14);    // ok, but dangerous:
                                    // the element becomes a dangling reference
    cut_off_rule();

    // char arr[2] = {'a', 'b'};
    // boost::tuple<char[2]>(arr); // error, arrays can not be copied
    // boost::tuple<char[2], Y>(arr, Y()); // error, neither arrays nor Y can be copied

    boost::tuple<char[2], Y>();       // ok

    cut_off_rule();

    boost::tuple<void (*)(int)> pFTuple1 = boost::make_tuple(&f);
    pFTuple1.get<0>()(10);

    boost::tuple<void (*)(int)> pFTuple2 = boost::make_tuple(boost::ref(f));
    pFTuple2.get<0>()(20);

    boost::tuple<void (&)(int)> pFTuple3(f);
    pFTuple3.get<0>()(30);

    boost::tuple<boost::tuple<void (&)(int)> > pFTuple4(f);
    pFTuple4.get<0>().get<0>()(40);

    cut_off_rule();

    // boost::tuple<int, char> stdPairToTuple = std::make_pair(1, 'a');

    cut_off_rule();

    boost::tuple<std::string, int, A> t1(std::string("same?"), 2, A());
    boost::tuple<std::string, long> t2(std::string("same?"), 2);
    boost::tuple<std::string, long> t3(std::string("different"), 3);
    // t1 == t2;        // true

    cut_off_rule();

    int i; char c;
    boost::tie(i, c) = std::make_pair(1, 'a');
    cout << i << " " << c << endl;

    cut_off_rule();

    boost::tie(boost::tuples::ignore, c) = std::make_pair(1, 'a');
    cout << c << endl;

    cut_off_rule();

    int myX = -1;
    double myY = -2;
    boost::tuple<int, double> f2(2);
    boost::tie(myX, myY) = f2; // #2
    cout << "myX = " << myX << ", myY = " <<myY << endl;
}
void cut_off_rule(void) {
    cout << "-----------------------------------" << endl;
}

void f(int i) {
    cout << "f(" << i << ")" << endl;
}


tuple是boost庫(kù)中一個(gè)類似標(biāo)準(zhǔn)std::pair庫(kù)庫(kù),但pair只能支持兩種元素,而tuple則可以支持大于兩種的。

更多詳解:http://www.boost.org/doc/libs/1_42_0/libs/tuple/doc/tuple_users_guide.html

以下內(nèi)容直接引自原文:


 

Boost C++ LibrariesBoost C++ Libraries

“...one of the most highly regarded and expertly designed C++ library projects in the world.” — Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

C++ 
Boost

The Boost Tuple Library

A tuple (or n-tuple) is a fixed size collection of elements. Pairs, triples, quadruples etc. are tuples. In a programming language, a tuple is a data object containing other objects as elements. These element objects may be of different types.

Tuples are convenient in many circumstances. For instance, tuples make it easy to define functions that return more than one value.

Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs. Unfortunately C++ does not. To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.

Table of Contents

  1. Using the library
  2. Tuple types
  3. Constructing tuples
  4. Accessing tuple elements
  5. Copy construction and tuple assignment
  6. Relational operators
  7. Tiers
  8. Streaming
  9. Performance
  10. Portability
  11. Acknowledgements
  12. References
More details

Advanced features (describes some metafunctions etc.).

Rationale behind some design/implementation decisions.

Using the library

To use the library, just include:

#include "boost/tuple/tuple.hpp"

Comparison operators can be included with:

#include "boost/tuple/tuple_comparison.hpp"

To use tuple input and output operators,

#include "boost/tuple/tuple_io.hpp"

Both tuple_io.hpp and tuple_comparison.hpp include tuple.hpp.

All definitions are in namespace ::boost::tuples, but the most common names are lifted to namespace ::boost with using declarations. These names are: tuple, make_tuple, tie and get. Further, ref and cref are defined directly under the ::boost namespace.

Tuple types

A tuple type is an instantiation of the tuple template. The template parameters specify the types of the tuple elements. The current version supports tuples with 0-10 elements. If necessary, the upper limit can be increased up to, say, a few dozen elements. The data element can be any C++ type. Note that void and plain function types are valid C++ types, but objects of such types cannot exist. Hence, if a tuple type contains such types as elements, the tuple type can exist, but not an object of that type. There are natural limitations for element types that cannot be copied, or that are not default constructible (see 'Constructing tuples' below).

For example, the following definitions are valid tuple instantiations (A, B and C are some user defined classes):

tuple<int>
tuple<double&, const double&, const double, double*, const double*>
tuple<A, int(*)(char, int), B(A::*)(C&), C>
tuple<std::string, std::pair<A, B> >
tuple<A*, tuple<const A*, const B&, C>, bool, void*>

Constructing tuples

The tuple constructor takes the tuple elements as arguments. For an n-element tuple, the constructor can be invoked with k arguments, where 0 <= k <= n. For example:

tuple<int, double>() 
tuple<int, double>(1)
tuple<int, double>(1, 3.14)

If no initial value for an element is provided, it is default initialized (and hence must be default initializable). For example.

class X {
X();
public:
X(std::string);
};

tuple<X,X,X>() // error: no default constructor for X
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok

In particular, reference types do not have a default initialization:

tuple<double&>()                // error: reference must be 
// initialized explicitly

double d = 5;
tuple<double&>(d) // ok

tuple<double&>(d+3.14) // error: cannot initialize
// non-const reference with a temporary

tuple<const double&>(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference

Using an initial value for an element that cannot be copied, is a compile time error:

class Y { 
Y(const Y&);
public:
Y();
};

char a[10];

tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
tuple<char[10], Y>(); // ok

Note particularly that the following is perfectly ok:

Y y;
tuple<char(&)[10], Y&>(a, y);

It is possible to come up with a tuple type that cannot be constructed. This occurs if an element that cannot be initialized has a lower index than an element that requires initialization. For example: tuple<char[10], int&>.

In sum, the tuple construction is semantically just a group of individual elementary constructions.

The make_tuple function

Tuples can also be constructed using the make_tuple (cf. std::make_pair) helper functions. This makes the construction more convenient, saving the programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}

By default, the element types are deduced to the plain non-reference types. E.g.:

void foo(const A& a, B& b) { 
...
make_tuple(a, b);

The make_tuple invocation results in a tuple of type tuple<A, B>.

Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied. Therefore, the programmer can control the type deduction and state that a reference to const or reference to non-const type should be used as the element type instead. This is accomplished with two helper template functions: ref and cref. Any argument can be wrapped with these functions to get the desired type. The mechanism does not compromise const correctness since a const object wrapped with ref results in a tuple element with const reference type (see the fifth example below). For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple<const A&, B>
make_tuple(ref(a), b); // creates tuple<A&, B>
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
make_tuple(cref(ca)); // creates tuple<const A&>
make_tuple(ref(ca)); // creates tuple<const A&>

Array arguments to make_tuple functions are deduced to reference to const types by default; there is no need to wrap them with cref. For example:

make_tuple("Donald", "Daisy");

This creates an object of type tuple<const char (&)[7], const char (&)[6]> (note that the type of a string literal is an array of const characters, not const char*). However, to get make_tuple to create a tuple with an element of a non-const array type one must use the ref wrapper.

Function pointers are deduced to the plain non-reference type, that is, to plain function pointer. A tuple can also hold a reference to a function, but such a tuple cannot be constructed with make_tuple (a const qualified function type would result, which is illegal):

void f(int i);
...
make_tuple(&f); // tuple<void (*)(int)>
...

volnet:
boost::tuple<void (&)(int)> pFTuple3(f);

pFTuple3.get<0>()(30);

tuple<tuple<void (&)(int)> > a(f) // ok
make_tuple(f); // not ok

Accessing tuple elements

Tuple elements are accessed with the expression:

t.get<N>()

or

get<N>(t)

where t is a tuple object and N is a constant integral expression specifying the index of the element to be accessed. Depending on whether t is const or not, get returns the Nth element as a reference to const or non-const type. The index of the first element is 0 and thus N must be between 0 and k-1, where k is the number of elements in the tuple. Violations of these constraints are detected at compile time. Examples:

double d = 2.7; A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A&> ct = t;
...
int i = get<0>(t); i = t.get<0>(); // ok
int j = get<0>(ct); // ok
get<0>(t) = 5; // ok
get<0>(ct) = 5; // error, can't assign to const
...
double e = get<1>(t); // ok
get<1>(t) = 3.14; // ok
get<2>(t) = A(); // error, can't assign to const
A aa = get<3>(t); // error: index out of bounds
...
++get<0>(t); // ok, can be used as any variable

Note! The member get functions are not supported with MS Visual C++ compiler. Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier. Hence, all get calls should be qualified as: tuples::get<N>(a_tuple) when writing code that should compile with MSVC++ 6.0.

Copy construction and tuple assignment

A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible. Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable. For example:

class A {};
class B : public A {};
struct C { C(); C(const B&); };
struct D { operator C() const; };
tuple<char, B*, B, D> t;
...
tuple<int, A*, C, C> a(t); // ok
a = t; // ok

In both cases, the conversions performed are: char -> int, B* -> A* (derived class pointer to base class pointer), B -> C (a user defined conversion) and D -> C (a user defined conversion).

Note that assignment is also defined from std::pair types:

tuple<float, int> a = std::make_pair(1, 'a');

volnet:(Eclipse with MinGW g++
conversion from `std::pair<int, char>' to non-scalar type `boost::tuples::tuple<float, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>' requested

Relational operators

Tuples reduce the operators ==, !=, <, >, <= and >= to the corresponding elementary operators. This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well. The equality operators for two tuples a and b are defined as:

  • a == b iff for each i: ai == bi
  • a != b iff exists i: ai != bi

The operators <, >, <= and >= implement a lexicographical ordering.

Note that an attempt to compare two tuples of different lengths results in a compile time error. Also, the comparison operators are "short-circuited": elementary comparisons start from the first elements and are performed only until the result is clear.

Examples:

tuple<std::string, int, A> t1(std::string("same?"), 2, A());
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
tuple<std::string, long, A> t3(std::string("different"), 3, A());

bool operator==(A, A) { std::cout << "All the same to me..."; return true; }

t1 == t2; // true
t1 == t3; // false, does not print "All the..."

Tiers

Tiers are tuples, where all elements are of non-const reference types. They are constructed with a call to the tie function template (cf. make_tuple):

int i; char c; double d; 
...
tie(i, c, a);

The above tie function creates a tuple of type tuple<int&, char&, double&>. The same result could be achieved with the call make_tuple(ref(i), ref(c), ref(a)).

A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:

int i; char c; double d; 
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout << i << " " << c << " " << d;

This code prints 1 a 5.5 to the standard output stream. A tuple unpacking operation like this is found for example in ML and Python. It is convenient when calling functions which return tuples.

The tying mechanism works with std::pair templates as well:

int i; char c;
tie(i, c) = std::make_pair(1, 'a');
Ignore

There is also an object called ignore which allows you to ignore an element assigned by a tuple. The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that ignore is under the tuples subnamespace):

char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');

Streaming

The global operator<< has been overloaded for std::ostream such that tuples are output by recursively calling operator<< for each element.

Analogously, the global operator>> has been overloaded to extract tuples from std::istream by recursively calling operator>> for each element.

The default delimiter between the elements is space, and the tuple is enclosed in parenthesis. For Example:

tuple<float, int, std::string> a(1.0f,  2, std::string("Howdy folks!");

cout << a;

outputs the tuple as: (1.0 2 Howdy folks!)

The library defines three manipulators for changing the default behavior:

  • set_open(char) defines the character that is output before the first element.
  • set_close(char) defines the character that is output after the last element.
  • set_delimiter(char) defines the delimiter character between elements.

Note, that these manipulators are defined in the tuples subnamespace. For example:

cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a; 

outputs the same tuple a as: [1.0,2,Howdy folks!]

The same manipulators work with operator>> and istream as well. Suppose the cin stream contains the following data:

(1 2 3) [4:5]

The code:

tuple<int, int, int> i;
tuple<int, int> j;

cin >> i;
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
cin >> j;

reads the data into the tuples i and j.

Note that extracting tuples with std::string or C-style string elements does not generally work, since the streamed tuple representation may not be unambiguously parseable.

Performance

All tuple access and construction functions are small inlined one-liners. Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes. Particularly, with a decent compiler there is no performance difference between this code:

class hand_made_tuple { 
A a; B b; C c;
public:
hand_made_tuple(const A& aa, const B& bb, const C& cc)
: a(aa), b(bb), c(cc) {};
A& getA() { return a; };
B& getB() { return b; };
C& getC() { return c; };
};

hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();

and this code:

tuple<A, B, C> t(A(), B(), C());
t.get<0>(); t.get<1>(); t.get<2>();

Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.

Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using non-const reference parameters as a mechanism for returning multiple values from a function. For example, suppose that the following functions f1 and f2 have equivalent functionalities:

void f1(int&, double&);
tuple<int, double> f2();

Then, the call #1 may be slightly faster than #2 in the code below:

int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2

volnet:
int myX = -1;
double myY = -2;
boost::tuple<int, double> f2(2);
boost::tie(myX, myY) = f2; // #2
cout << "myX = " << myX << ", myY = " <<myY << endl;

See [1, 2] for more in-depth discussions about efficiency.

Effect on Compile Time

Compiling tuples can be slow due to the excessive amount of template instantiations. Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the hand_made_tuple class above. However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable. Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently. With the same test programs, memory consumption of compiling increased between 22% to 27%. See [1, 2] for details.

Portability

The library code is(?) standard C++ and thus the library works with a standard conforming compiler. Below is a list of compilers and known problems with each compiler:

Compiler
Problems

gcc 2.95
-

edg 2.44
-

Borland 5.5
Can't use function pointers or member pointers as tuple elements

Metrowerks 6.2
Can't use ref and cref wrappers

MS Visual C++
No reference elements (tie still works). Can't use ref and cref wrappers

Acknowledgements

Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the library. The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.

References

[1] J?rvi J.: Tuples and multiple return values in C++, TUCS Technical Report No 249, 1999.

[2] J?rvi J.: ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism, TUCS Technical Report No 267, 1999.

[3] J?rvi J.:Tuple Types and Multiple Return Values, C/C++ Users Journal, August 2001.


Last modified 2003-09-07

? Copyright Jaakko J?rvi 2001. Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies. This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.



 

posted on 2010-03-25 17:46 volnet 閱讀(1722) 評(píng)論(0)  編輯 收藏 引用 所屬分類: C/C++

特殊功能
 
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧美成人一区二区在线电影 | 欧美夫妇交换俱乐部在线观看| 亚洲国产精品小视频| 亚洲尤物影院| 午夜精品一区二区三区在线视| 正在播放欧美视频| 99精品国产99久久久久久福利| 亚洲激情婷婷| 一本大道久久a久久精品综合 | 亚洲一区二区伦理| 小黄鸭精品aⅴ导航网站入口 | 久久久久久尹人网香蕉| 免费欧美日韩| 亚洲精品你懂的| 亚洲人成在线观看一区二区| 亚洲免费观看视频| 亚洲欧美春色| 另类图片国产| 欧美午夜片在线观看| 国产欧美在线看| 亚洲免费电影在线观看| 亚洲资源在线观看| 久久免费观看视频| 亚洲三级色网| 久久久久久久97| 欧美日韩精品免费观看视一区二区| 国产精品日本一区二区| 亚洲欧洲精品一区| 欧美一区二区啪啪| 亚洲国产另类精品专区| 亚洲欧美视频一区| 欧美成人免费在线| 国产女优一区| 一区二区高清视频| 裸体丰满少妇做受久久99精品| 最新成人在线| 久久午夜色播影院免费高清| 国产精品乱人伦中文| 久久久久在线观看| 欧美日韩精品一区二区在线播放| 国产毛片一区| 99精品免费网| 另类专区欧美制服同性| 亚洲一区二区三区免费在线观看| 免费亚洲电影在线| 国内激情久久| 久久国产欧美精品| 亚洲一区二区精品视频| 欧美三级网页| 99精品视频免费观看| 欧美不卡视频一区发布| 欧美伊人精品成人久久综合97| 欧美三级视频在线观看| 一本久久综合亚洲鲁鲁| 欧美激情精品久久久久久蜜臀| 久久福利精品| 国产一区二区精品久久| 久久久久久久综合日本| 欧美一级久久久久久久大片| 国产精品亚洲а∨天堂免在线| 亚洲午夜视频在线观看| 日韩午夜av电影| 欧美区一区二区三区| 日韩网站在线看片你懂的| 欧美成人免费在线| 蜜臀a∨国产成人精品| 亚洲激情视频在线| 91久久国产综合久久91精品网站 | 国产精品v欧美精品v日韩精品| 亚洲精品1区2区| 欧美激情视频给我| 欧美高清在线精品一区| 一本久久知道综合久久| 亚洲视频中文| 国产日韩欧美不卡| 免费观看亚洲视频大全| 免费视频久久| 亚洲视频1区2区| 亚洲一线二线三线久久久| 国产欧美一区二区白浆黑人| 久久久夜精品| 欧美成人午夜剧场免费观看| 最近中文字幕日韩精品 | 在线免费观看日韩欧美| 欧美成人免费大片| 欧美精品久久久久久久| 亚洲欧美日本国产有色| 欧美在线国产| 亚洲精品国产欧美| 一区二区欧美国产| 国产在线播放一区二区三区| 免费视频一区二区三区在线观看| 欧美国产大片| 欧美在线免费观看视频| 久久夜色精品国产亚洲aⅴ| 一本色道久久99精品综合| 亚洲欧美区自拍先锋| 99精品欧美一区二区三区综合在线| 一区二区不卡在线视频 午夜欧美不卡在 | 久久精品二区| 亚洲日本一区二区| 一区二区欧美在线| 在线高清一区| 一区二区三区四区国产精品| 伊人色综合久久天天五月婷| 日韩视频欧美视频| 激情一区二区| 一区二区三区高清在线| 亚洲国产成人精品久久| 99亚洲一区二区| 欲香欲色天天天综合和网| 一区二区欧美在线| 亚洲片在线资源| 欧美中文字幕视频| 西瓜成人精品人成网站| 欧美日韩精品一区二区三区| 男女精品网站| 国产在线高清精品| 在线亚洲国产精品网站| 亚洲精一区二区三区| 久久精品夜夜夜夜久久| 欧美一区日本一区韩国一区| 欧美人与禽猛交乱配视频| 欧美成人免费网站| 精品粉嫩aⅴ一区二区三区四区| 亚洲一区欧美一区| 中国女人久久久| 欧美第一黄色网| 欧美va亚洲va国产综合| 国产亚洲亚洲| 午夜欧美大片免费观看| 午夜亚洲福利在线老司机| 欧美日韩在线免费视频| 亚洲精品黄色| 一本色道久久综合亚洲精品不卡| 老司机午夜精品| 欧美gay视频激情| 亚洲第一综合天堂另类专| 久久九九久精品国产免费直播| 欧美在线亚洲综合一区| 国产日本欧美一区二区| 亚洲欧洲av一区二区三区久久| 亚洲一本视频| 国产精品久久久久久久浪潮网站 | 欧美在线精品免播放器视频| 久久高清国产| 国产在线一区二区三区四区 | 欧美激情 亚洲a∨综合| 亚洲高清久久网| 亚洲最新视频在线| 欧美日韩裸体免费视频| 1000精品久久久久久久久| 欧美韩国日本综合| 91久久久在线| 欧美精品激情blacked18| 亚洲精品字幕| 亚洲欧美自拍偷拍| 国产一区二区在线免费观看| 久久av一区二区三区漫画| 久热成人在线视频| 亚洲精品精选| 国产精品成人一区二区| 久久福利视频导航| 亚洲日本激情| 欧美一区二区三区免费视频| 激情偷拍久久| 欧美日韩国产成人精品| 亚洲一区二区三区在线看| 久久久精品2019中文字幕神马| 樱桃国产成人精品视频| 欧美激情中文字幕乱码免费| 亚洲一区二区在线免费观看| 久久综合九色综合久99| 一个色综合导航| 国产乱码精品1区2区3区| 久久激情视频免费观看| 91久久国产综合久久蜜月精品 | 国产亚洲一区精品| 美女网站在线免费欧美精品| 亚洲激情影视| 久久久精品免费视频| av成人黄色| 影音先锋久久| 国产精品人成在线观看免费| 久久影院亚洲| 亚洲一区免费| 91久久精品国产91性色| 久久久久一区| 亚洲欧美中日韩| 亚洲美女黄色片| 一区二区三区在线不卡| 国产精品久久久久久影视| 免费一级欧美在线大片| 欧美一区二区| 亚洲伊人网站| 日韩网站在线观看| 亚洲激情在线视频| 欧美国产视频在线观看| 久久精品成人一区二区三区| 亚洲小说春色综合另类电影|