青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

MyMSDN

MyMSDN記錄開(kāi)發(fā)新知道

boost::tuple

boost::tuple<derived> tup4;
boost::tuple<base> tup5;
tup5 = tup4;
tup4.get<0>().test();
tup5.get<0>().test(); // 丟失多態(tài)性
derived d; boost::tuple<derived*> tup6(&d); boost::tuple<base*> tup7; tup7 = tup6; tup6.get<0>()->test(); tup7.get<0>()->test(); // 恢復(fù)多態(tài)性(方法1) boost::tuple<derived&> tup8(d); boost::tuple<base&> tup9(tup8);
// tup9 = tup8; 不能使用該方法,因?yàn)闊o(wú)法對(duì)引用賦值。
tup8.get<0>().test(); tup9.get<0>().test(); // 恢復(fù)多態(tài)性(方法2)
/*
 * tuple.cpp
 *
 *  Created on: 2010-3-25
 *      Author: GoCool
 */
#include <stdlib.h>
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include "../header/baseClass.h"

using namespace std;
class X {
  X();
public:
  X(std::string){}
};
class Y {
  Y(const Y&);
public:
  Y(){}
};
class A {
};
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
void f(int i);

void cut_off_rule(void);
int main(void){
    // add a new tuple
    boost::tuple<int,double,std::string>   triple(42, 3.14, "My first tuple!");
    int a = triple.get<0>();
    ++a;
    cout << a << endl;
    cout << triple << endl;

    cut_off_rule();

    boost::tuple<int, double> pair = boost::make_tuple(21, 22.5);
    cout << pair << endl;

    cut_off_rule();

    int pair_element_1 = -1;
    double pair_element_2 = -1;
    boost::tie(pair_element_1, pair_element_2) = pair;

    cout << pair_element_1 << "," << pair_element_2 << endl;

    cut_off_rule();

    boost::tuple<int,std::string,derived> tup1(-5,"Tuples");
    boost::tuple<unsigned int,std::string,base> tup2;
    tup2=tup1;
    tup2.get<2>().test();
    std::cout << "Interesting value: " << tup2.get<0>() << '\n';
    const boost::tuple<double,std::string,base> tup3(tup2);
    // Description    Resource    Path    Location    Type
    // assignment of read-only location    tuple.cpp    boost_tuple/src    45    C/C++ Problem
    // tup3.get<0>()=3.14;

    cut_off_rule();

    boost::tuple<X,X,X> obj = boost::tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")); // ok

    cut_off_rule();

    double dNum = 5;
    boost::tuple<double&> numTuple(dNum);               // ok

    // boost::tuple<double&>(dNum+3.14);          // error: cannot initialize
                                    // non-const reference with a temporary

    boost::tuple<const double&>(dNum+3.14);    // ok, but dangerous:
                                    // the element becomes a dangling reference
    cut_off_rule();

    // char arr[2] = {'a', 'b'};
    // boost::tuple<char[2]>(arr); // error, arrays can not be copied
    // boost::tuple<char[2], Y>(arr, Y()); // error, neither arrays nor Y can be copied

    boost::tuple<char[2], Y>();       // ok

    cut_off_rule();

    boost::tuple<void (*)(int)> pFTuple1 = boost::make_tuple(&f);
    pFTuple1.get<0>()(10);

    boost::tuple<void (*)(int)> pFTuple2 = boost::make_tuple(boost::ref(f));
    pFTuple2.get<0>()(20);

    boost::tuple<void (&)(int)> pFTuple3(f);
    pFTuple3.get<0>()(30);

    boost::tuple<boost::tuple<void (&)(int)> > pFTuple4(f);
    pFTuple4.get<0>().get<0>()(40);

    cut_off_rule();

    // boost::tuple<int, char> stdPairToTuple = std::make_pair(1, 'a');

    cut_off_rule();

    boost::tuple<std::string, int, A> t1(std::string("same?"), 2, A());
    boost::tuple<std::string, long> t2(std::string("same?"), 2);
    boost::tuple<std::string, long> t3(std::string("different"), 3);
    // t1 == t2;        // true

    cut_off_rule();

    int i; char c;
    boost::tie(i, c) = std::make_pair(1, 'a');
    cout << i << " " << c << endl;

    cut_off_rule();

    boost::tie(boost::tuples::ignore, c) = std::make_pair(1, 'a');
    cout << c << endl;

    cut_off_rule();

    int myX = -1;
    double myY = -2;
    boost::tuple<int, double> f2(2);
    boost::tie(myX, myY) = f2; // #2
    cout << "myX = " << myX << ", myY = " <<myY << endl;
}
void cut_off_rule(void) {
    cout << "-----------------------------------" << endl;
}

void f(int i) {
    cout << "f(" << i << ")" << endl;
}


tuple是boost庫(kù)中一個(gè)類似標(biāo)準(zhǔn)std::pair庫(kù)庫(kù),但pair只能支持兩種元素,而tuple則可以支持大于兩種的。

更多詳解:http://www.boost.org/doc/libs/1_42_0/libs/tuple/doc/tuple_users_guide.html

以下內(nèi)容直接引自原文:


 

Boost C++ LibrariesBoost C++ Libraries

“...one of the most highly regarded and expertly designed C++ library projects in the world.” — Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

C++ 
Boost

The Boost Tuple Library

A tuple (or n-tuple) is a fixed size collection of elements. Pairs, triples, quadruples etc. are tuples. In a programming language, a tuple is a data object containing other objects as elements. These element objects may be of different types.

Tuples are convenient in many circumstances. For instance, tuples make it easy to define functions that return more than one value.

Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs. Unfortunately C++ does not. To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.

Table of Contents

  1. Using the library
  2. Tuple types
  3. Constructing tuples
  4. Accessing tuple elements
  5. Copy construction and tuple assignment
  6. Relational operators
  7. Tiers
  8. Streaming
  9. Performance
  10. Portability
  11. Acknowledgements
  12. References
More details

Advanced features (describes some metafunctions etc.).

Rationale behind some design/implementation decisions.

Using the library

To use the library, just include:

#include "boost/tuple/tuple.hpp"

Comparison operators can be included with:

#include "boost/tuple/tuple_comparison.hpp"

To use tuple input and output operators,

#include "boost/tuple/tuple_io.hpp"

Both tuple_io.hpp and tuple_comparison.hpp include tuple.hpp.

All definitions are in namespace ::boost::tuples, but the most common names are lifted to namespace ::boost with using declarations. These names are: tuple, make_tuple, tie and get. Further, ref and cref are defined directly under the ::boost namespace.

Tuple types

A tuple type is an instantiation of the tuple template. The template parameters specify the types of the tuple elements. The current version supports tuples with 0-10 elements. If necessary, the upper limit can be increased up to, say, a few dozen elements. The data element can be any C++ type. Note that void and plain function types are valid C++ types, but objects of such types cannot exist. Hence, if a tuple type contains such types as elements, the tuple type can exist, but not an object of that type. There are natural limitations for element types that cannot be copied, or that are not default constructible (see 'Constructing tuples' below).

For example, the following definitions are valid tuple instantiations (A, B and C are some user defined classes):

tuple<int>
tuple<double&, const double&, const double, double*, const double*>
tuple<A, int(*)(char, int), B(A::*)(C&), C>
tuple<std::string, std::pair<A, B> >
tuple<A*, tuple<const A*, const B&, C>, bool, void*>

Constructing tuples

The tuple constructor takes the tuple elements as arguments. For an n-element tuple, the constructor can be invoked with k arguments, where 0 <= k <= n. For example:

tuple<int, double>() 
tuple<int, double>(1)
tuple<int, double>(1, 3.14)

If no initial value for an element is provided, it is default initialized (and hence must be default initializable). For example.

class X {
X();
public:
X(std::string);
};

tuple<X,X,X>() // error: no default constructor for X
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok

In particular, reference types do not have a default initialization:

tuple<double&>()                // error: reference must be 
// initialized explicitly

double d = 5;
tuple<double&>(d) // ok

tuple<double&>(d+3.14) // error: cannot initialize
// non-const reference with a temporary

tuple<const double&>(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference

Using an initial value for an element that cannot be copied, is a compile time error:

class Y { 
Y(const Y&);
public:
Y();
};

char a[10];

tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
tuple<char[10], Y>(); // ok

Note particularly that the following is perfectly ok:

Y y;
tuple<char(&)[10], Y&>(a, y);

It is possible to come up with a tuple type that cannot be constructed. This occurs if an element that cannot be initialized has a lower index than an element that requires initialization. For example: tuple<char[10], int&>.

In sum, the tuple construction is semantically just a group of individual elementary constructions.

The make_tuple function

Tuples can also be constructed using the make_tuple (cf. std::make_pair) helper functions. This makes the construction more convenient, saving the programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}

By default, the element types are deduced to the plain non-reference types. E.g.:

void foo(const A& a, B& b) { 
...
make_tuple(a, b);

The make_tuple invocation results in a tuple of type tuple<A, B>.

Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied. Therefore, the programmer can control the type deduction and state that a reference to const or reference to non-const type should be used as the element type instead. This is accomplished with two helper template functions: ref and cref. Any argument can be wrapped with these functions to get the desired type. The mechanism does not compromise const correctness since a const object wrapped with ref results in a tuple element with const reference type (see the fifth example below). For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple<const A&, B>
make_tuple(ref(a), b); // creates tuple<A&, B>
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
make_tuple(cref(ca)); // creates tuple<const A&>
make_tuple(ref(ca)); // creates tuple<const A&>

Array arguments to make_tuple functions are deduced to reference to const types by default; there is no need to wrap them with cref. For example:

make_tuple("Donald", "Daisy");

This creates an object of type tuple<const char (&)[7], const char (&)[6]> (note that the type of a string literal is an array of const characters, not const char*). However, to get make_tuple to create a tuple with an element of a non-const array type one must use the ref wrapper.

Function pointers are deduced to the plain non-reference type, that is, to plain function pointer. A tuple can also hold a reference to a function, but such a tuple cannot be constructed with make_tuple (a const qualified function type would result, which is illegal):

void f(int i);
...
make_tuple(&f); // tuple<void (*)(int)>
...

volnet:
boost::tuple<void (&)(int)> pFTuple3(f);

pFTuple3.get<0>()(30);

tuple<tuple<void (&)(int)> > a(f) // ok
make_tuple(f); // not ok

Accessing tuple elements

Tuple elements are accessed with the expression:

t.get<N>()

or

get<N>(t)

where t is a tuple object and N is a constant integral expression specifying the index of the element to be accessed. Depending on whether t is const or not, get returns the Nth element as a reference to const or non-const type. The index of the first element is 0 and thus N must be between 0 and k-1, where k is the number of elements in the tuple. Violations of these constraints are detected at compile time. Examples:

double d = 2.7; A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A&> ct = t;
...
int i = get<0>(t); i = t.get<0>(); // ok
int j = get<0>(ct); // ok
get<0>(t) = 5; // ok
get<0>(ct) = 5; // error, can't assign to const
...
double e = get<1>(t); // ok
get<1>(t) = 3.14; // ok
get<2>(t) = A(); // error, can't assign to const
A aa = get<3>(t); // error: index out of bounds
...
++get<0>(t); // ok, can be used as any variable

Note! The member get functions are not supported with MS Visual C++ compiler. Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier. Hence, all get calls should be qualified as: tuples::get<N>(a_tuple) when writing code that should compile with MSVC++ 6.0.

Copy construction and tuple assignment

A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible. Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable. For example:

class A {};
class B : public A {};
struct C { C(); C(const B&); };
struct D { operator C() const; };
tuple<char, B*, B, D> t;
...
tuple<int, A*, C, C> a(t); // ok
a = t; // ok

In both cases, the conversions performed are: char -> int, B* -> A* (derived class pointer to base class pointer), B -> C (a user defined conversion) and D -> C (a user defined conversion).

Note that assignment is also defined from std::pair types:

tuple<float, int> a = std::make_pair(1, 'a');

volnet:(Eclipse with MinGW g++
conversion from `std::pair<int, char>' to non-scalar type `boost::tuples::tuple<float, int, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type, boost::tuples::null_type>' requested

Relational operators

Tuples reduce the operators ==, !=, <, >, <= and >= to the corresponding elementary operators. This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well. The equality operators for two tuples a and b are defined as:

  • a == b iff for each i: ai == bi
  • a != b iff exists i: ai != bi

The operators <, >, <= and >= implement a lexicographical ordering.

Note that an attempt to compare two tuples of different lengths results in a compile time error. Also, the comparison operators are "short-circuited": elementary comparisons start from the first elements and are performed only until the result is clear.

Examples:

tuple<std::string, int, A> t1(std::string("same?"), 2, A());
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
tuple<std::string, long, A> t3(std::string("different"), 3, A());

bool operator==(A, A) { std::cout << "All the same to me..."; return true; }

t1 == t2; // true
t1 == t3; // false, does not print "All the..."

Tiers

Tiers are tuples, where all elements are of non-const reference types. They are constructed with a call to the tie function template (cf. make_tuple):

int i; char c; double d; 
...
tie(i, c, a);

The above tie function creates a tuple of type tuple<int&, char&, double&>. The same result could be achieved with the call make_tuple(ref(i), ref(c), ref(a)).

A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:

int i; char c; double d; 
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout << i << " " << c << " " << d;

This code prints 1 a 5.5 to the standard output stream. A tuple unpacking operation like this is found for example in ML and Python. It is convenient when calling functions which return tuples.

The tying mechanism works with std::pair templates as well:

int i; char c;
tie(i, c) = std::make_pair(1, 'a');
Ignore

There is also an object called ignore which allows you to ignore an element assigned by a tuple. The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that ignore is under the tuples subnamespace):

char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');

Streaming

The global operator<< has been overloaded for std::ostream such that tuples are output by recursively calling operator<< for each element.

Analogously, the global operator>> has been overloaded to extract tuples from std::istream by recursively calling operator>> for each element.

The default delimiter between the elements is space, and the tuple is enclosed in parenthesis. For Example:

tuple<float, int, std::string> a(1.0f,  2, std::string("Howdy folks!");

cout << a;

outputs the tuple as: (1.0 2 Howdy folks!)

The library defines three manipulators for changing the default behavior:

  • set_open(char) defines the character that is output before the first element.
  • set_close(char) defines the character that is output after the last element.
  • set_delimiter(char) defines the delimiter character between elements.

Note, that these manipulators are defined in the tuples subnamespace. For example:

cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a; 

outputs the same tuple a as: [1.0,2,Howdy folks!]

The same manipulators work with operator>> and istream as well. Suppose the cin stream contains the following data:

(1 2 3) [4:5]

The code:

tuple<int, int, int> i;
tuple<int, int> j;

cin >> i;
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tuples::set_delimiter(':');
cin >> j;

reads the data into the tuples i and j.

Note that extracting tuples with std::string or C-style string elements does not generally work, since the streamed tuple representation may not be unambiguously parseable.

Performance

All tuple access and construction functions are small inlined one-liners. Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes. Particularly, with a decent compiler there is no performance difference between this code:

class hand_made_tuple { 
A a; B b; C c;
public:
hand_made_tuple(const A& aa, const B& bb, const C& cc)
: a(aa), b(bb), c(cc) {};
A& getA() { return a; };
B& getB() { return b; };
C& getC() { return c; };
};

hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();

and this code:

tuple<A, B, C> t(A(), B(), C());
t.get<0>(); t.get<1>(); t.get<2>();

Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.

Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using non-const reference parameters as a mechanism for returning multiple values from a function. For example, suppose that the following functions f1 and f2 have equivalent functionalities:

void f1(int&, double&);
tuple<int, double> f2();

Then, the call #1 may be slightly faster than #2 in the code below:

int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2

volnet:
int myX = -1;
double myY = -2;
boost::tuple<int, double> f2(2);
boost::tie(myX, myY) = f2; // #2
cout << "myX = " << myX << ", myY = " <<myY << endl;

See [1, 2] for more in-depth discussions about efficiency.

Effect on Compile Time

Compiling tuples can be slow due to the excessive amount of template instantiations. Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the hand_made_tuple class above. However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable. Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently. With the same test programs, memory consumption of compiling increased between 22% to 27%. See [1, 2] for details.

Portability

The library code is(?) standard C++ and thus the library works with a standard conforming compiler. Below is a list of compilers and known problems with each compiler:

Compiler
Problems

gcc 2.95
-

edg 2.44
-

Borland 5.5
Can't use function pointers or member pointers as tuple elements

Metrowerks 6.2
Can't use ref and cref wrappers

MS Visual C++
No reference elements (tie still works). Can't use ref and cref wrappers

Acknowledgements

Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the library. The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.

References

[1] J?rvi J.: Tuples and multiple return values in C++, TUCS Technical Report No 249, 1999.

[2] J?rvi J.: ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism, TUCS Technical Report No 267, 1999.

[3] J?rvi J.:Tuple Types and Multiple Return Values, C/C++ Users Journal, August 2001.


Last modified 2003-09-07

? Copyright Jaakko J?rvi 2001. Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies. This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.



 

posted on 2010-03-25 17:46 volnet 閱讀(1722) 評(píng)論(0)  編輯 收藏 引用 所屬分類: C/C++

特殊功能
 
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产亚洲精品aa午夜观看| 欧美激情精品久久久久久变态| 欧美成人激情视频免费观看| 极品尤物久久久av免费看| 欧美精品乱人伦久久久久久 | 久久婷婷av| 亚洲国产精品高清久久久| 亚洲在线视频| 国产亚洲欧美一级| 久久久久在线观看| 欧美在线播放| 亚洲一区二区三区精品在线观看| 99精品视频一区| 亚洲一区二区在| 久久精品导航| 亚洲天堂av在线免费| 久久国产精品久久久久久电车 | 欧美日韩在线精品| 夜夜夜久久久| 免费日韩视频| 亚洲一区免费网站| 国产欧美一区二区精品性| 久久―日本道色综合久久| 亚洲一区三区在线观看| 在线亚洲观看| 欧美国产欧美亚州国产日韩mv天天看完整| 久久免费偷拍视频| 午夜精品视频| 午夜在线a亚洲v天堂网2018| 99视频精品| 亚洲欧美另类综合偷拍| 国产一区视频网站| 欧美亚洲第一区| 久久久久久国产精品一区| 欧美高清在线视频| 日韩视频一区二区三区在线播放| 每日更新成人在线视频| 伊人久久av导航| 欧美精品免费看| 亚洲一线二线三线久久久| 亚洲精一区二区三区| 欧美一区二区视频网站| 欧美午夜视频在线观看| 久久久久久久综合| 亚洲国产精品黑人久久久| 狠狠色丁香婷婷综合| 国产精品久久久久一区| 国产精品免费看片| 国产精品v日韩精品v欧美精品网站 | 亚洲黄色av| 国产精品一区久久| 亚洲性感激情| 亚洲欧美日韩一区在线观看| 亚洲三级电影在线观看 | 久久精品一区四区| 午夜一区在线| 韩日成人av| 91久久久久久久久久久久久| 欧美日韩高清在线| 欧美一二三视频| 免费在线观看成人av| 欧美精品一区二区三区久久久竹菊 | 久久综合久久综合久久综合| 欧美视频三区在线播放| 国产伦精品一区二区三区| 亚洲欧洲一区二区三区久久| 久久人人爽人人| 香蕉视频成人在线观看| 国产视频在线一区二区| 亚洲乱码一区二区| 亚洲精品在线免费观看视频| 久久久久免费观看| 好吊色欧美一区二区三区四区 | 亚洲精品一二三| 一区二区三区四区五区在线| 亚洲精品久久久久久久久久久久久| 欧美激情黄色片| 免费观看30秒视频久久| 欧美激情网友自拍| 国产欧美日韩精品专区| 亚洲精品一区二区三区av| 久久亚洲图片| 久久久九九九九| 激情综合激情| 午夜日韩在线| 亚洲国产精品一区二区www在线| 亚洲少妇一区| 欧美高清成人| 国产精品高精视频免费| 亚洲精品资源| 欧美中文字幕在线观看| 亚洲美女毛片| 亚洲激情成人网| 欧美刺激性大交免费视频| 亚洲女优在线| 女生裸体视频一区二区三区| 免费试看一区| 久久婷婷麻豆| 欧美一区二区三区四区在线观看地址| 亚洲激情电影中文字幕| 久久一区二区三区四区| 在线成人小视频| 亚洲欧美另类在线| 欧美福利视频网站| 日韩一区二区精品葵司在线| 欧美视频日韩视频在线观看| 欧美在线免费| 午夜天堂精品久久久久| 久久综合久久88| 午夜国产精品影院在线观看| 一本久久a久久免费精品不卡| 亚洲一区美女视频在线观看免费| 久久久视频精品| 正在播放亚洲一区| 一区二区免费在线视频| 国产综合av| 两个人的视频www国产精品| 六十路精品视频| 亚洲国产成人精品久久久国产成人一区| 午夜激情亚洲| 亚洲人成网站777色婷婷| 日韩视频永久免费观看| 欧美电影在线免费观看网站| 欧美激情亚洲国产| 午夜宅男欧美| 国产伦精品一区二区三区四区免费 | 激情综合色综合久久综合| 免费视频一区| 亚洲国产成人av| 欧美大片专区| 欧美亚洲日本网站| 欧美日韩一区高清| 亚洲国产精品悠悠久久琪琪| 亚洲欧洲三级电影| 免费成人黄色片| 一区二区三区四区精品| 亚洲综合日本| 国产精品午夜视频| 裸体女人亚洲精品一区| 欧美电影免费观看| 欧美在线免费| 亚洲永久网站| 精品电影一区| 国产日韩精品视频一区二区三区| 久久免费黄色| 久久高清国产| 亚洲综合久久久久| 欧美成人资源| 亚洲啪啪91| 国产精品免费观看在线| 美国三级日本三级久久99| 性亚洲最疯狂xxxx高清| 国产精品成人国产乱一区| 亚洲欧美日韩中文视频| 亚洲一区二区三区在线| 亚洲一区二区av电影| 欧美日韩国产精品| 亚洲一区激情| 中文在线不卡视频| 国产精品久久久久久户外露出| 日韩一区二区高清| 一区二区激情| 国产在线乱码一区二区三区| 亚洲欧美日韩爽爽影院| 亚洲在线免费| 99视频精品全国免费| 国产精品免费网站在线观看| 久久精品国产免费| 久久国产精品久久久| 欧美亚洲免费电影| 亚洲国产精品久久91精品| 欧美一级播放| 亚洲国产精品电影| 久色婷婷小香蕉久久| 伊人伊人伊人久久| 亚洲视频在线观看三级| 日韩午夜黄色| 久久久久久亚洲精品杨幂换脸 | 一区二区高清视频| 久久久精品动漫| 久久久久久久精| 精品电影在线观看| 欧美高清在线精品一区| 欧美亚洲一级片| 国产精品久久午夜夜伦鲁鲁| 亚洲一区精品电影| 久久久av水蜜桃| 欧美日韩一区二区在线观看| 伊人久久婷婷色综合98网| 亚洲精品国产精品国自产观看| 久久阴道视频| 欧美视频中文在线看 | 久久久久久久久岛国免费| 国产精品毛片| 午夜精品一区二区三区在线视 | 亚洲欧美日韩天堂一区二区| 一区二区三区精密机械公司 | 久久视频在线免费观看| 亚洲国产精品成人| 久久久午夜视频|