• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            SGU 104. Little shop of flowers

            104. Little shop of flowers

            time limit per test: 0.50 sec.
            memory limit per test: 4096 KB

            PROBLEM

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

               

            V A S E S

               

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            ASSUMPTIONS

            • 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

               

            • FV ≤ 100 where V is the number of vases.

               

            • -50 £ Aij £ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

               

             

            Input

            • The first line contains two numbers: F, V.

               

            • The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

               

             

            Output

            • The first line will contain the sum of aesthetic values for your arrangement.

               

            • The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put.

               

             

            Sample Input

            3 5
                        7 23 -5 -24 16
                        5 21 -4 10 23
                        -21 5 -4 -20 20
                        

            Sample Output

            53
                        2 4 5
                        
            Analysis

            It is called a problem derived from IOI. As a typical DP problem, the only thing we need to think about is the dynamic function. This problem is harder since we need to record the tracy of dynamic programing.
            Let's assume that dp[i][j] means the maximum sum of  aesthetic values about first i flowers puts in first j vases. Then, since the only choice for the ith flower is whether put or not, the function is obvious: dp[i][j]=max{dp[i][j-1],dp[i-1][j-1]+a[i][j]}. Limitness is that i<j should be held and record the action "put".

            Code
            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>
            #define max(a,b) a>b?a:b

            int dp[101][101];
            bool put[101][101];
            int f,v;
            int a[101][101];    

            void putprint(int i,int j){
                
            while (put[i][j]) j--;
                
            if (i>1) putprint(i-1,j-1);
                
            if (i==f) printf("%d\n",j);
                
            else printf("%d ",j);
            }


            int main(){
                
            int i,j;
                
                scanf(
            "%d %d",&f,&v);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v;j++)
                        scanf(
            "%d",&a[i][j]);
                
                memset(dp,
            0,sizeof dp);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v-f+i;j++){
                        dp[i][i
            -1]=-32767;
                        dp[i][j]
            =dp[i-1][j-1]+a[i][j];;put[i][j]=false;
                        
            if (dp[i][j-1]>(dp[i-1][j-1]+a[i][j])){
                            dp[i][j]
            =dp[i][j-1];
                            put[i][j]
            =true;
                        }
                            
                    }

                printf(
            "%d\n",dp[f][v]);
                putprint(f,v);
                
            return 0;
            }

            posted on 2008-11-03 14:35 幻浪天空領主 閱讀(1020) 評論(1)  編輯 收藏 引用 所屬分類: SGU

            評論

            # re: SGU 104. Little shop of flowers 2011-06-07 11:14 zqynux

            dp[i][i-1]=-32767;
            這句話為什么可以解決負數的問題??  回復  更多評論   

            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            一级做a爰片久久毛片免费陪| 久久精品国产2020| 热久久这里只有精品| 青青草国产精品久久| 久久精品成人| 久久午夜无码鲁丝片| 国产精品久久自在自线观看| 久久国产精品免费| 久久精品国产亚洲av影院| 亚洲乱亚洲乱淫久久| 一本一本久久A久久综合精品 | 久久婷婷成人综合色综合| 成人资源影音先锋久久资源网| 久久精品国产亚洲5555| 亚洲国产精品无码久久一线| 久久se这里只有精品| A狠狠久久蜜臀婷色中文网| 久久综合久久性久99毛片| 国产精品久久国产精品99盘| 天天综合久久一二三区| 91亚洲国产成人久久精品| 久久久久亚洲AV片无码下载蜜桃 | 国产精品熟女福利久久AV| 中文字幕无码久久精品青草| 青青青青久久精品国产h| 亚洲国产精品无码久久SM| 久久综合久久性久99毛片| 国产精品女同一区二区久久| 久久国产一区二区| 久久久老熟女一区二区三区| 成人综合久久精品色婷婷| 精品久久人人爽天天玩人人妻| 99久久国产热无码精品免费| 狠狠色婷婷久久综合频道日韩| 无码人妻久久一区二区三区蜜桃| 精品国产婷婷久久久| 久久综合九色综合久99| 99久久国产热无码精品免费久久久久| 国产精品久久精品| 久久久国产精品网站| 91精品国产综合久久四虎久久无码一级 |