• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            SGU 104. Little shop of flowers

            104. Little shop of flowers

            time limit per test: 0.50 sec.
            memory limit per test: 4096 KB

            PROBLEM

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

               

            V A S E S

               

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            ASSUMPTIONS

            • 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

               

            • FV ≤ 100 where V is the number of vases.

               

            • -50 £ Aij £ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

               

             

            Input

            • The first line contains two numbers: F, V.

               

            • The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

               

             

            Output

            • The first line will contain the sum of aesthetic values for your arrangement.

               

            • The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put.

               

             

            Sample Input

            3 5
                        7 23 -5 -24 16
                        5 21 -4 10 23
                        -21 5 -4 -20 20
                        

            Sample Output

            53
                        2 4 5
                        
            Analysis

            It is called a problem derived from IOI. As a typical DP problem, the only thing we need to think about is the dynamic function. This problem is harder since we need to record the tracy of dynamic programing.
            Let's assume that dp[i][j] means the maximum sum of  aesthetic values about first i flowers puts in first j vases. Then, since the only choice for the ith flower is whether put or not, the function is obvious: dp[i][j]=max{dp[i][j-1],dp[i-1][j-1]+a[i][j]}. Limitness is that i<j should be held and record the action "put".

            Code
            #include <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>
            #define max(a,b) a>b?a:b

            int dp[101][101];
            bool put[101][101];
            int f,v;
            int a[101][101];    

            void putprint(int i,int j){
                
            while (put[i][j]) j--;
                
            if (i>1) putprint(i-1,j-1);
                
            if (i==f) printf("%d\n",j);
                
            else printf("%d ",j);
            }


            int main(){
                
            int i,j;
                
                scanf(
            "%d %d",&f,&v);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v;j++)
                        scanf(
            "%d",&a[i][j]);
                
                memset(dp,
            0,sizeof dp);
                
            for (i=1;i<=f;i++)
                    
            for (j=1;j<=v-f+i;j++){
                        dp[i][i
            -1]=-32767;
                        dp[i][j]
            =dp[i-1][j-1]+a[i][j];;put[i][j]=false;
                        
            if (dp[i][j-1]>(dp[i-1][j-1]+a[i][j])){
                            dp[i][j]
            =dp[i][j-1];
                            put[i][j]
            =true;
                        }
                            
                    }

                printf(
            "%d\n",dp[f][v]);
                putprint(f,v);
                
            return 0;
            }

            posted on 2008-11-03 14:35 幻浪天空領主 閱讀(1030) 評論(1)  編輯 收藏 引用 所屬分類: SGU

            評論

            # re: SGU 104. Little shop of flowers 2011-06-07 11:14 zqynux

            dp[i][i-1]=-32767;
            這句話為什么可以解決負數的問題??  回復  更多評論   

            <2025年8月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案(2)

            文章分類(23)

            文章檔案(22)

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            99久久国产综合精品网成人影院| 亚洲欧美精品一区久久中文字幕| 国产精品久久久久久影院| 国产一区二区精品久久岳| 女人高潮久久久叫人喷水| 久久久久久无码Av成人影院| 免费观看久久精彩视频| 亚洲伊人久久综合中文成人网| 久久亚洲中文字幕精品有坂深雪| 国产成人久久777777| 亚洲国产精品18久久久久久| AAA级久久久精品无码区| 久久综合狠狠综合久久综合88| 热综合一本伊人久久精品| 久久综合综合久久97色| 久久AV无码精品人妻糸列| 日韩美女18网站久久精品| 99久久伊人精品综合观看| 久久se精品一区二区| 久久99久久99精品免视看动漫| 久久久这里只有精品加勒比| 久久免费大片| 久久se精品一区二区影院| 久久久久免费精品国产| 72种姿势欧美久久久久大黄蕉| 久久久久亚洲AV无码网站| 亚洲精品乱码久久久久久| 18禁黄久久久AAA片| 日本欧美国产精品第一页久久| 久久精品视屏| 色综合合久久天天给综看| 久久青青草原亚洲av无码| 亚洲а∨天堂久久精品9966| 久久青青草原精品国产不卡| 久久久久亚洲精品天堂久久久久久 | 国产69精品久久久久777| 亚洲人成伊人成综合网久久久| 少妇人妻综合久久中文字幕| 久久久久亚洲国产| 热re99久久6国产精品免费| 久久久久久无码Av成人影院|