• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            Base Station

            Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65768/32768 K (Java/Others)
            Total Submission(s): 844    Accepted Submission(s): 353


            Problem Description
            A famous mobile communication company is planning to build a new set of base stations. According to the previous investigation, n places are chosen as the possible new locations to build those new stations. However, the condition of each position varies much, so the costs to built a station at different places are different. The cost to build a new station at the ith place is Pi (1<=i<=n).

            When complete building, two places which both have stations can communicate with each other.

            Besides, according to the marketing department, the company has received m requirements. The ith requirement is represented by three integers Ai, Bi and Ci, which means if place Aand Bi can communicate with each other, the company will get Ci profit.

            Now, the company wants to maximize the profits, so maybe just part of the possible locations will be chosen to build new stations. The boss wants to know the maximum profits.
             

            Input
            Multiple test cases (no more than 20), for each test case:
            The first line has two integers n (0<n<=5000) and m (0<m<=50000).
            The second line has n integers, P1 through Pn, describes the cost of each location.
            Next m line, each line contains three integers, Ai, Bi and Ci, describes the ith requirement.
             

            Output
            One integer each case, the maximum profit of the company.
             

            Sample Input
            5 5 1 2 3 4 5 1 2 3 2 3 4 1 3 3 1 4 2 4 5 3
             

            Sample Output
            4
             

            Author
            liulibo
             

            Source
             

            Recommend
            lcy
             
            論文題,Amber最小割模型里面的,最大權閉合圖,因為數組開的太大了,吃了一次RE......
            最大權閉合圖不用說了,邊看成收益點,連向S,流量是點權,站點看成花費點,連向T,流量也是點權,其他按照原圖連邊,流量是無限大,之后做一次最小割,割值就是你未選的收益點+選定花費點(因為是閉合圖,所以割肯定是簡單割,想一下割的定義,就明白割值的含義了),用你總收益-割值,就是答案。
            用SAP求的最小割,漸漸愛上SAP了,Dinic不用了.....
            代碼:

            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            #include 
            <queue>
            using namespace std;

            const int maxnode = 60000;
            const int maxedge = 320000;
            const long long inf = (1LL << 35);

            int S, T, cnt;
            int head[maxnode], gap[maxnode], pre[maxnode], cur[maxnode], dis[maxnode];

            struct Edge
            {
                
            int s, t;
                
            int next;
                
            long long w;
            } st[maxedge];

            void init()
            {
                memset(head, 
            -1sizeof(head));
                cnt 
            = 0;
            }

            void AddEdge(int s, int t, long long w)
            {
                st[cnt].s 
            = s;
                st[cnt].t 
            = t;
                st[cnt].w 
            = w;
                st[cnt].next 
            = head[s];
                head[s] 
            = cnt;
                cnt
            ++;

                st[cnt].s 
            = t;
                st[cnt].t 
            = s;
                st[cnt].w 
            = 0;
                st[cnt].next 
            = head[t];
                head[t] 
            = cnt;
                cnt
            ++;
            }

            void bfs()
            {
                memset(gap, 
            0sizeof(gap));
                memset(dis, 
            -1sizeof(dis));
                queue 
            <int> Q;
                Q.push(T);
                dis[T] 
            = 0;
                gap[
            0= 1;
                
            int k, t;
                
            while (!Q.empty())
                {
                    k 
            = Q.front();
                    Q.pop();
                    
            for (int i = head[k]; i != -1; i =st[i].next)
                    {
                        t 
            = st[i].t;
                        
            if (dis[t] == -1 && st[i ^ 1].w > 0)
                        {
                            dis[t] 
            = dis[k] + 1;
                            gap[dis[t]]
            ++;
                            Q.push(t);
                        }
                    }
                }
            }

            long long sap()
            {
                
            int i;
                
            for (i = S; i <= T; ++i)
                    cur[i] 
            = head[i];
                pre[S] 
            = S;
                
            int u = S, v;
                
            long long flow = 0;
                
            long long aug = inf;
                
            bool flag;
                
            while (dis[S] <= T)
                {
                    flag 
            = false;
                    
            for (i = cur[u]; i != -1; i = st[i].next)
                    {
                        v 
            = st[i].t;
                        
            if (st[i].w > 0 && dis[u] == dis[v] + 1)
                        {
                            cur[u] 
            = i;
                            flag 
            = true;
                            pre[v] 
            = u;
                            aug 
            = (aug > st[i].w) ? st[i].w : aug;
                            u 
            = v;
                            
            if (v == T)
                            {
                                flow 
            += aug;
                                
            for (u = pre[u]; v != S; u = pre[u])
                                {
                                    v 
            = u;
                                    st[cur[u]].w 
            -= aug;
                                    st[cur[u] 
            ^ 1].w += aug;
                                }
                                aug 
            = inf;
                            }
                            
            break;
                        }
                    }
                    
            if (flag == truecontinue;
                    
            int mint = T;
                    
            for (i = head[u]; i != -1; i = st[i].next)
                    {
                        v 
            = st[i].t;
                        
            if (st[i].w > 0 && mint > dis[v])
                        {
                            cur[u] 
            = i;
                            mint 
            = dis[v];
                        }
                    }
                    gap[dis[u]]
            --;
                    
            if (gap[dis[u]] == 0break;
                    gap[dis[u] 
            = mint + 1]++;
                    u 
            = pre[u];
                    
            if (u == S) aug = inf;
                }
                
            return flow;
            }

            int main()
            {
                
            int n, m;
                
            while (scanf("%d%d"&n, &m) != EOF)
                {
                    init();
                    S 
            = 0;
                    T 
            = n + m + 1;
                    
            int sum = 0;
                    
            for (int i = 1; i <= n; ++i)
                    {
                        
            int x;
                        scanf(
            "%d"&x);
                        AddEdge(m 
            + i, T, x);
                    }
                    
            for (int i = 1; i <= m; ++i)
                    {
                        
            int a, b, c;
                        scanf(
            "%d%d%d"&a, &b, &c);
                        AddEdge(S, i, c);
                        AddEdge(i, m 
            + a, inf);
                        AddEdge(i, m 
            + b, inf);
                        sum 
            += c;
                    }
                    bfs();
                    sum 
            -= sap();
                    printf(
            "%d\n", sum);
                }
                
            return 0;
            }
            posted on 2011-10-15 22:10 LLawliet 閱讀(126) 評論(0)  編輯 收藏 引用 所屬分類: 網絡流
            亚洲国产精品久久久天堂| 99精品久久精品一区二区| 91久久精品视频| 狠狠精品干练久久久无码中文字幕 | 亚洲精品乱码久久久久久中文字幕 | 久久青青草视频| 国内精品久久久久影院日本| 久久99久久99小草精品免视看| 久久精品国产精品亚洲人人 | 久久久久久无码国产精品中文字幕| 亚洲色欲久久久久综合网| 精品少妇人妻av无码久久| 99久久免费只有精品国产| 久久精品人人做人人爽电影| 色综合久久精品中文字幕首页| 久久久黄片| 伊人久久综在合线亚洲2019 | 丰满少妇高潮惨叫久久久| 亚洲国产精品嫩草影院久久| 国产精品99久久免费观看| 久久久久亚洲精品无码网址| 欧美黑人又粗又大久久久| 久久久人妻精品无码一区| 国产一区二区三区久久| 色8久久人人97超碰香蕉987| 久久综合九色综合欧美就去吻| 一本一道久久精品综合| 久久精品亚洲日本波多野结衣 | 日本精品久久久久中文字幕| 无码精品久久久天天影视 | 日韩精品久久久久久久电影蜜臀| 精品久久久久久无码中文野结衣| 久久水蜜桃亚洲av无码精品麻豆| 久久亚洲AV成人无码软件| 久久精品成人欧美大片| 久久免费国产精品一区二区| 精品国际久久久久999波多野| 蜜臀av性久久久久蜜臀aⅴ| 无码AV中文字幕久久专区| 国产69精品久久久久久人妻精品| 久久久久久久久久久精品尤物|