青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

天秤座的唐風

總會有一個人需要你的分享~!- 唐風 -

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  13 隨筆 :: 0 文章 :: 69 評論 :: 0 Trackbacks

作者:唐風

原載:www.cnblogs.com/liyiwen

 

關于類型擦除,在網(wǎng)上搜出來的中文資料比較少,而且一提到類型擦除,檢索結果里就跑出很多 Java 和 C# 相關的文章來(它們實現(xiàn)“泛型”的方式)。所以,這一篇我打算寫得稍微詳細一點。 注意,這是一篇讀書筆記(《C++ template metaprogramming》第9.7小節(jié)和《C++ テンプレートテクニック》第七章),里面的例子都來自原書。


在 C++ 中,編譯器在編譯期進行的靜態(tài)類型檢查是比較嚴格的,但有時候我們卻希望能“避過”這樣的類型檢查,以實現(xiàn)更靈活的功能,同時又盡量地保持類型安全。聽起來很矛盾,而且貌似很難辦到。但其實 C++ 的庫里已經(jīng)有很多這樣的應用了。比如,著名的 boost::function 和 boost::any 。當我們定義一個 function<void(int)> fun 對象,則 fun 即可以存儲函數(shù)指針,又可以存儲函數(shù)對象,注意,這兩者是不同“類型”的,而且函數(shù)對象可以是無限種類型的,但這些不同類型的“東西”都可以存在同一類型的對象 fun 中,對 fun 來說,它關心的只是存儲的“對象”是不是“可以按某種形式(如void(int))來調(diào)用”,而不關心這個“對象”是什么樣的類型。有了 function 這樣的庫,在使用回調(diào)和保存可調(diào)用“對象”的時候,我們就可以寫出更簡單且更好用的代碼來。再舉一個例子,boost::any 庫。any 可以存儲任何類型的“對象”,比如 int ,或是你自己定義的類 MyCla 的對象。這樣我們就可以使一個容器(比如 vector<boost::any> )來存儲不同類型的對象了。

這些庫所表現(xiàn)出來的行為,就是這篇文章中要提到的類型擦除,類型擦除可以達到下面兩個目的:

  • 用類型 S 的接口代表一系列類型 T 的的共性。
  • 如果 s 是 S 類型的變量,那么,任何 T 類型的的對象都可以賦值給s。

好了,下面我們具體地看看類型擦除是怎么回事,在這個過程中,我們先以 any 這個類為依托來解釋(因為它比較“簡單”,要解釋的額外的東西比較少)。

any 這個類需要完成的主要任務是:1. 存儲任何類型的變量 2. 可以相互拷貝 3. 可以查詢所存變量的類型信息 4. 可以轉化回原來的類型(any_cast<>)

對于其中,只要說明1和2 ,就能把類型擦除的做法展示出來了,所以,我們這里只實現(xiàn)一個簡單的,有1、2、3功能的any類(3是為了驗證)。

首先,寫個最簡單的“架子”出來:

class my_any { 
    ?? content_obj; 
public: 
    template <typename T> 
    my_any(T const& a_right); 
}; 

這里,由于 my_any 的拷貝構造函數(shù)使用的是模板函數(shù),因此,我們可以任何類型的對象來初始化,并把該對象的復本保存在 content_obj 這個數(shù)據(jù)成員中。那么,問題是,content_obj 用什么類型好呢?

首先我們會想到,給 class 加個模板參數(shù) T ,然后……,不用然后了,這樣的話,使用者需要寫這樣的代碼:

my_any<someType> x = y;

不同的 y 會創(chuàng)造出不同類型的 x 對象,完全不符合我們要將不同類型對象賦給同一類型對象的初衷。接著,我們會想到用 void *(C 式的泛型手法啊……),但這樣的話,我們就會完全地丟失原對象的信息,使得后面一些操作(拷貝、還原等)變得很困難,那么,再配合著加入一些變量用于保存原對象信息?你是說用類似“反射”的能力?好吧,我只好說,我以為 C++ 不存在原生的反射能力,以我淺薄的認識,我只知道像 MFC 式的侵入式手法……,嗯,此路不通。

這個困境的原因在于,在C++ 的類中,除了類模板參數(shù)之外,無法在不同的成員(函數(shù)、數(shù)據(jù)成員)之間共享類型信息。在這個例子中,content_obj 無法得知構造函數(shù)中的 T 是什么類型。所以類型無法確定。

為了妥善保存原對象復本,我們定義兩個輔助類,先上代碼(來自 boost::any 的原碼):

class placeholder 
{ 
public: // structors 
    virtual ~placeholder()      { 
    } 
public: // queries 
    virtual const std::type_info & type() const = 0; 
    virtual placeholder * clone() const = 0; 
}; 

template<typename ValueType> 
class holder : public placeholder 
{ 
public: // structors 
    holder(const ValueType & value): held(value) 
    { 
    } 
public: // queries 
    virtual const std::type_info & type() const { 
        return typeid(ValueType); 
    } 
    virtual placeholder * clone() const { 
        return new holder(held); 
    } 
public: // representation 
    ValueType held; 
}; 

首先,定義了一個基類 placeholder ,它是一個非模板的抽象類,這個抽象類的兩個接口是用來抽取對保存在 my_any 中的各種類型對象的共性的,也就是,我們需要對被保存在 my_any 中的數(shù)據(jù)進行拷貝和類型查詢。

然后用一個模板類 holder 類繼承 placeholder 類,這個(類)派生類實現(xiàn)了基類的虛函數(shù),并保存了相關的數(shù)據(jù)。注意,派生類的數(shù)據(jù)成員的類型是 ValueType,也就是完整的原對象類型,由于它是個模板類,各個類成員之間可以共享類模板參數(shù)的信息,所以,可以方便地用原數(shù)據(jù)類型來進行各種操作。

有了這兩個輔助類,我們就可以這樣寫 my_any 了:

class My_any
{
    placeholder * content_obj;
public:
    template <typename T>
    My_any(T const& a_right):content_obj(new T(a_right))
    {}

    template <typename T>
    My_any & operator = (T const& a_right) {
        delete content_obj;
        content_obj = new T(a_right);
        return *this;
    }

    My_any(My_any const& a_right)
      : content_obj(a_right.content_obj ? 
          a_right.content_obj->clone() : 0)
    {        
    }

    std::type_info& type() const {
        return content_obj ? content_obj->type() : typeid(void);
    }
};

現(xiàn)在 my_any 類的 content_obj 的類型定義成 placeholder * ,在構造函數(shù)(和賦值運算符)中,我們使用 holder 類來生成真實的“備份”,由于 holder 是模板類,它可以根據(jù)賦值的對象相應地保存要我們需要的信息。這樣,我們就完成了在賦值的時候的“類型擦除”啦。在 my_any 的 public 接口( type() )中,利用 placeholder 的虛函數(shù),我們就可以進行子類提供的那些操作,而子類,已經(jīng)完整地保存著我們需要的原對象的信息。

接著我們看下 boost::function 中的 Type Erasure。相比起 boost::any 來,function 庫要復雜得多,因為這里只是想講 boost::function 中的“類型擦除”,而不是 boost::function 源碼剖析,所以,我們?nèi)匀槐局喕喕俸喕哪康模惶糁懻撘恍氨匾钡某煞帧?/font>

我們假設 function 不接受任何參數(shù)。為了更好的說明,我先帖代碼,再一步一步解釋,注意,下面是一片白花花的代碼,幾沒有注釋,千萬別開罵,請?zhí)^這段代碼,后面會有分段的解釋:

#include <iostream>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/mpl/if.hpp>

using namespace std;

union any_callable {
    void (*fun_prt) (); // 函數(shù)指針
    void * fun_obj;     // 函數(shù)對象
};

template<typename Func, typename R>
struct fun_prt_manager {
    static R invoke(any_callable a_fp) {
        return reinterpret_cast<Func>(a_fp.fun_prt)();
    }
    static void destroy(any_callable a_fp) {}
};

template<typename Func, typename R>
struct fun_obj_manager {
    static R invoke(any_callable a_fo) {
        return (*reinterpret_cast<Func*>(a_fo.fun_obj))();
    }
    static void destroy(any_callable a_fo) {
        delete reinterpret_cast<Func*>(a_fo.fun_obj);
    }
};

struct funtion_ptr_tag {};
struct funtion_obj_tag {};

template <typename Func>
struct get_function_tag {
    typedef typename boost::mpl::if_<
        boost::is_pointer<Func>, // 在 VC10 中標準庫已經(jīng)有它啦
        funtion_ptr_tag,
        funtion_obj_tag
    >::type FunType;
};

template <typename Signature>
class My_function;

template <typename R>
class My_function<R()> {
    R (*invoke)(any_callable);
    void (*destory)(any_callable);
    any_callable fun;
public:
    ~My_function() {
        clear();
    }

    template <typename Func>
    My_function& operator = (Func a_fun) {
        typedef typename get_function_tag<Func>::FunType fun_tag;
        assign(a_fun, fun_tag());
        return *this;
    }

    R operator () () const {
        return invoke(fun);        
    }

    template <typename T>
    void assign (T a_funPtr, funtion_ptr_tag) {
        clear();
        invoke = &fun_prt_manager<T, R>::invoke;
        destory = &fun_prt_manager<T, R>::destroy;
        fun.fun_prt = reinterpret_cast<void(*)()>(a_funPtr);
    }

    template <typename T>
    void assign (T a_funObj, funtion_obj_tag) {
        clear();
        invoke = &fun_obj_manager<T, R>::invoke;
        destory = &fun_obj_manager<T, R>::destroy;
        fun.fun_obj = reinterpret_cast<void*>(new T(a_funObj));
    }

private:
    void clear() {
        if (!destory) {
            destory(fun);
            destory = 0;
        }
    }
};


int TestFun() {
    return 0;
}

class TestFunObj {
public:
    int operator() () const {
        return 1;
    }
};

int main(int argc, char* argv[])
{
    My_function<int ()> fun;
    fun = &TestFun;
    cout<<fun()<<endl;
    fun = TestFunObj();
    cout<<fun()<<endl;    
}

首先需要考慮的是,數(shù)據(jù)成員放什么?因為我們需要存儲函數(shù)指針,也需要存儲函數(shù)對象,所以,這里定義一個聯(lián)合體:

union any_callable {
    void (*fun_prt) (); // 函數(shù)指針
    void * fun_obj;     // 函數(shù)對象
};

用來存放相應的“調(diào)用子”。另外兩個數(shù)據(jù)成員(函數(shù)指針)是為了使用上的方便,用于存儲分別針對函數(shù)指針和函數(shù)對象的相應的“操作方法”。對于函數(shù)指針和函數(shù)對象這兩者,轉型(cast)的動作都是不一樣的,所以,我們定義了兩個輔助類 fun_prt_manager 和 fun_obj_manager,它們分別定義了針對函數(shù)指針和函數(shù)對象進行類型轉換,然后再引發(fā)相應的“調(diào)用”和“銷毀”的動作。

接下來是類的兩個 assign 函數(shù),它們針對函數(shù)針指和函數(shù)對象,分別用不同的方法來初始化類的數(shù)據(jù)成員,你看:

invoke = &fun_prt_manager<T, R>::invoke;
destory = &fun_prt_manager<T, R>::destroy;
fun.fun_prt = reinterpret_cast<void(*)()>(a_funPtr);

當 My_function 的對象是用函數(shù)指針賦值時,invoke 被 fun_prt_manager 的 static 來初始化,這樣,在“調(diào)用”時就把數(shù)據(jù)成員轉成函數(shù)指針。同理,可以知道函數(shù)對象時相應的做法(這里就不啰嗦了)。

但如何確定在進行賦值時,哪一個 assign 被調(diào)用呢?我想,熟悉 STL 的你,看到 funtion_ptr_tag 和 funtion_obj_tag 時就笑了,是的,這里的 get_function_tag 用了 type_traise 的技法,并且,配合了 boost::mpl 提供的靜態(tài) if_ 簡化了代碼。這樣,我們就完成了賦值運算符的編寫:

    template <typename Func>
    My_function& operator = (Func a_fun) {
        typedef typename get_function_tag<Func>::FunType fun_tag;
        assign(a_fun, fun_tag());
        return *this;
    }

有了這個函數(shù),針對函數(shù)指針和函數(shù)對象,My_function 的數(shù)據(jù)成員都可以正確的初始化了。

如我們所見,在 My_function 中,使用了很多技巧和輔助類,以使得 My_funtion 可以獲取在內(nèi)部保存下函數(shù)指針或是函數(shù)對象,并在需要的時候,調(diào)用它們。函數(shù)指針或是函數(shù)對象,一旦賦值給 My_funtion,在外部看來,便失去了原來的“類型”信息,而只剩下一個共性——可以調(diào)用(callable)

這兩個例子已經(jīng)向你大概展示了 C++ 的“類型擦除”,最后,再補充一下我的理解:C++中所說的“類型擦除”不是有“標準實現(xiàn)”的一種“技術”(像 CRTP 或是 Trais 技術那樣有明顯的實現(xiàn)“規(guī)律”),而更像是從使用者角度而言的一種“行為模式”。比如對于一個 boost::function 對象來說,你可以用函數(shù)指針和函數(shù)對象來對它賦值,從使用者的角度看起來,就好像在賦值的過程中,funtion pointer 和 functor 自身的類型信息被抹去了一樣,它們都被“剝離成”成了boost::function 對象的類型,只保留了“可以調(diào)用”這么一個共性,而 boost::any ,則只保留各種類型的“type查詢”和“復制”能力這兩個“共性”,其它類型信息一概抹掉。這種“類型擦除”并不是真正的語言層面擦除的,正如我們已經(jīng)看到的,這一切仍然是在 C++ 的類型檢查系統(tǒng)中工作,維持著類型安全上的優(yōu)點。

posted on 2009-12-10 23:05 唐風 閱讀(2594) 評論(9)  編輯 收藏 引用 所屬分類: 語言技術

評論

# re: C++中的類型擦除(type erasure in c++) 2009-12-11 09:00 Touchsoft
學習了……  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-11 09:14 崇文
做個標記,等看到這章的時候再來看,目前只看到第五章呢。  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-11 13:21 Vitacy.Tan
union any_callable {
void (*fun_prt) (); // 函數(shù)指針
void * fun_obj; // 函數(shù)對象
};
不用分開對待,直接void * fun就行了.函數(shù)可以直接當對象使用.
template <typename R,typename F>
class callable
{
public:
static R call(void * fun){
return (*static_cast<F *>(fun))();
}
static void destory(void *fun){
delete static_cast<F*>(fun);
}
};
template <typename R>
class function
{
public:
R operator () (){
return (*m_call)(m_fun);
}
template <typename T>
void operator=(T fun){
m_fun = static_cast<void *>(new T(fun));
m_call=callable<R,T>::call;
m_destory=callable<R,T>::destory;
}
template <typename T>
R call(){
(*static_cast<T *>(m_fun))();
}
~function(){
(*m_destory)(m_fun);
}
private:
void * m_fun;
R (*m_call)(void *);
void (*m_destory)(void *);
};
  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-12 10:50 唐風
@Vitacy.Tan
嗯,試過了你的代碼,確實在我的例子的情況下,你的做法沒有問題而且更簡潔。呵,說真的,第一次看到 new 一個 function pointer 對象,有點詫異。后來想通了,function pointer 也不過就是一個 pointer 而已。
但 boost::function 中確實對兩者進行了區(qū)分對待,而且考慮了更多的情況情況:
/**
       * A buffer used to store small function objects in
       * boost::function. It is a union containing function pointers,
       * object pointers, and a structure that resembles a bound
       * member function pointer.
       
*/

      union function_buffer
      
{
        
// For pointers to function objects
        mutable void* obj_ptr;

        
// For pointers to std::type_info objects
        struct type_t {
          
// (get_functor_type_tag, check_functor_type_tag).
          const BOOST_FUNCTION_STD_NS::type_info* type;

          
// Whether the type is const-qualified.
          bool const_qualified;
          
// Whether the type is volatile-qualified.
          bool volatile_qualified;
        }
 type;

        
// For function pointers of all kinds
        mutable void (*func_ptr)();

        
// For bound member pointers
        struct bound_memfunc_ptr_t {
          
void (X::*memfunc_ptr)(int);
          
void* obj_ptr;
        }
 bound_memfunc_ptr;

        
// For references to function objects. We explicitly keep
        
// track of the cv-qualifiers on the object referenced.
        struct obj_ref_t {
          mutable 
void* obj_ptr;
          
bool is_const_qualified;
          
bool is_volatile_qualified;
        }
 obj_ref;

        
// To relax aliasing constraints
        mutable char data;
      }
;

在下淺薄,不能完全明白其中的道理,還請路過高人指點。
 

 
  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-13 11:53 唐風
@Vitacy.Tan
在網(wǎng)上找了一下相關的資料,發(fā)現(xiàn)這個問題其實已經(jīng)有了比較多的“討論”,還有專門論述的文章:
http://www.safercode.com/blog/2008/11/25/generic-function-pointers-in-c-and-void.html

簡而言之,就是:
不能 void* 和 void(*f)() 合并成一個,原因是對于 C 標準而言,這兩個“東西”并不保證一致,函數(shù)指針的大小可能比 void* (也就是指向數(shù)據(jù)的指針大小要大),可能會包含更多的信息,如果在這之間進行轉換的話,在某些平臺會產(chǎn)生未定義的行為(在 Windows 平臺下,這樣做是沒問題的,參考http://stackoverflow.com/questions/1867698/casting-a-void-pointer-data-to-a-function-pointer 中的回復)。因此,這么做是為了可移植性的考慮。

相關原文如下:
Why can’t we use void* for a Generic Function Pointer?
This is because a void* is a pointer to a generic “data” type. A void * is used to denote pointers to objects and in some systems, pointers to functions can be larger than pointers to objects. So, if you convert amongst them, you’ll lose information and hence, the situation would be undefined and implementation dependent. Most compilers won’t even warn you if you convert between them but some might error out, if you try to call such a void * to function pointer converted. But even they might fail to alert you, if you take care of typecasting the call perfectly (Enclose in parentheses before function call brackets). And then, one fine day, you’ll try to compile and run your program on one of the aforementioned systems, and then keep on wondering why your program segfaults.

Note: C++ does allow this “conditionally” which means that such a conversion is allowed but a compiler is not bound to implement this feature, which again makes its usage circumspect.

另外,我還是不太明白,function pointer 可能攜帶的其它信息是什么,呵呵,再查查嘍。

謝謝 Vitacy.Tan 的回復,讓我能更深入的了解這方面的知識。
嗯,有人能參與討論就是好啊,希望大家多指點。



  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-13 12:05 唐風
@Vitacy.Tan
話又說回來,在你的做法中,并沒有直接在 function pointer 和 void* 之間進行轉型,而是為 function pointer 創(chuàng)建(new)了一個對象,賦給 void*,這樣做我感覺是沒有問題的,這時候 void* 指向的仍然是一個“對象”,呵呵。
但這么做可能在“效率”上不如直接備份 function pointer 。畢竟,創(chuàng)建時候的 new 和調(diào)用時的轉型加最后的 delete,都比直接存 function pointer 負擔大。但這樣做獲得了代碼上的一致性,我倒是挺喜歡的,呵呵(如果確實沒有“我所不知道的問題的話”)。
  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-14 11:16 Vitacy.Tan
function pointer 可能攜帶的其它信息是什么
參數(shù)個數(shù) 類型 還有像int a(int b=1);
在C++里參數(shù)個數(shù) 類型在函數(shù)名里(指針好像也沒這個),默認參數(shù)可以重載解決
  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-17 10:45 U2U
很感謝你這篇文章,寫得很好!  回復  更多評論
  

# re: C++中的類型擦除(type erasure in c++) 2009-12-18 07:38 欲三更
恩,上面那個回復里用“指針的指針”規(guī)避對象指針和函數(shù)指針的大小不一樣這一點,挺好的。  回復  更多評論
  

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              黑人一区二区三区四区五区| 国内精品久久久久久久97牛牛| 久久综合999| 欧美四级在线观看| 亚洲乱码视频| 欧美激情视频一区二区三区在线播放| 亚洲午夜精品在线| 欧美日韩视频一区二区| 亚洲日韩第九十九页| 欧美成人69av| 久久久午夜电影| 狠狠色丁香婷综合久久| 久久精品国产99国产精品澳门| 一区二区精品在线| 欧美日韩一区在线视频| 中日韩男男gay无套| 99精品国产一区二区青青牛奶| 欧美精品在线观看播放| 91久久亚洲| 亚洲国产日韩一区| 看片网站欧美日韩| 亚洲国产精品一区| 亚洲国产欧美国产综合一区 | 午夜日韩在线观看| 国产欧美日韩专区发布| 欧美一区二区三区日韩| 亚洲欧美国产77777| 国产日韩专区在线| 久久人人爽国产| 噜噜噜91成人网| 一区二区成人精品| 国产精品99久久久久久久久| 国产精品推荐精品| 开心色5月久久精品| 免费欧美日韩| 亚洲私人影院在线观看| 午夜免费电影一区在线观看| 国产一区二区三区无遮挡| 可以免费看不卡的av网站| 裸体歌舞表演一区二区| 一区二区高清视频| 欧美亚洲一区三区| 亚洲国产欧洲综合997久久| 亚洲日本va午夜在线电影| 国产精品高潮呻吟久久| 久久久免费精品视频| 久久综合狠狠综合久久激情| 久久久久久91香蕉国产| 正在播放日韩| 欧美一级久久久| 日韩午夜在线播放| 亚洲欧美日韩专区| 亚洲精品久久久久| 性欧美大战久久久久久久免费观看| 狠狠色综合色综合网络| 亚洲美女在线国产| 在线欧美日韩国产| 亚洲一二三区在线| 亚洲乱码国产乱码精品精98午夜| 亚洲欧美激情一区二区| av成人免费在线观看| 久久国产精品久久久久久| a4yy欧美一区二区三区| 久久久久一区二区三区| 亚洲综合精品自拍| 毛片一区二区三区| 久久久视频精品| 国产精品免费网站在线观看| 亚洲国产精品一区二区尤物区| 国产日韩欧美制服另类| 亚洲精品久久久一区二区三区| 国产亚洲一级高清| 亚洲一二三四久久| 正在播放亚洲| 欧美精品福利| 欧美电影美腿模特1979在线看| 国产日本欧美在线观看| 亚洲视频在线观看一区| 99精品欧美一区| 欧美大片一区| 欧美激情日韩| 亚洲高清视频的网址| 久久久久久高潮国产精品视| 久久国产日韩| 国产日韩一级二级三级| 亚洲专区一区| 亚洲无限乱码一二三四麻| 欧美激情一区| 亚洲第一区中文99精品| 久久这里只精品最新地址| 久久久国产午夜精品| 国产乱人伦精品一区二区| 亚洲精选久久| 一区二区三区回区在观看免费视频| 久久久精品2019中文字幕神马| 久久国产精品亚洲va麻豆| 欧美午夜激情在线| 亚洲一区二区精品| 亚洲视频在线免费观看| 欧美天天影院| 亚洲最快最全在线视频| 亚洲午夜精品一区二区| 欧美精品亚洲一区二区在线播放| 91久久国产自产拍夜夜嗨| 1024精品一区二区三区| 狂野欧美性猛交xxxx巴西| 久久一区中文字幕| 亚洲国产成人av| 免费视频亚洲| 亚洲精选大片| 一区二区三区日韩精品视频| 国产精品久久| 亚洲欧美成人一区二区在线电影 | 久久久噜久噜久久综合| 免费看精品久久片| 在线欧美小视频| 欧美精品一区二区三区视频| 亚洲国产婷婷综合在线精品 | 精品成人国产在线观看男人呻吟| 久久久精品一品道一区| 欧美91视频| 亚洲视频一区二区| 国产精品一区免费视频| 久久久久女教师免费一区| 欧美a级片一区| 一区二区三区你懂的| 国产精品久久7| 久久视频精品在线| 欧美激情精品久久久久久免费印度 | 欧美激情视频一区二区三区在线播放 | 久久精品视频va| 亚洲人成毛片在线播放女女| 中国女人久久久| 狠狠88综合久久久久综合网| 裸体丰满少妇做受久久99精品| 99精品国产在热久久婷婷| 欧美一区二区三区免费观看视频 | 国产自产2019最新不卡| 欧美激情导航| 在线亚洲国产精品网站| 欧美大尺度在线| 亚洲一区日本| 亚洲国产精品999| 欧美视频日韩| 欧美成人国产一区二区| 一二三四社区欧美黄| 牛人盗摄一区二区三区视频| 99精品热视频| 91久久午夜| 国产日产欧美一区| 久久久国产精彩视频美女艺术照福利 | 国产精品久久久久久久久免费桃花 | 欧美电影免费观看高清| 久久国产精品亚洲va麻豆| 最新成人av在线| 国内精品久久久久影院优| 欧美精选午夜久久久乱码6080| 久久久久久自在自线| 一区二区精品在线| 亚洲精品一区久久久久久| 中日韩男男gay无套| 亚洲欧洲在线一区| 99亚洲一区二区| 亚洲精品乱码久久久久久日本蜜臀 | 欧美激情免费在线| 久久综合导航| 99视频在线精品国自产拍免费观看| 欧美搞黄网站| 136国产福利精品导航网址| 国产精品一二| 国产精品人人做人人爽| 欧美日本韩国| 欧美日韩精品久久久| 另类av导航| 女同一区二区| 久久蜜桃资源一区二区老牛| 久久免费视频这里只有精品| 亚洲自拍16p| 午夜一区二区三区在线观看| 一区二区日韩| 午夜一级在线看亚洲| 亚洲第一综合天堂另类专| 亚洲国产岛国毛片在线| 亚洲精品中文字幕有码专区| 亚洲国产精品一区二区第四页av| 亚洲高清免费在线| 激情成人av| 91久久黄色| 亚洲国产你懂的| 一区二区电影免费观看| 日韩视频一区二区三区| 亚洲天堂av综合网| 亚洲视频在线二区| 欧美一区二区视频在线观看| 国产精品久久久久久久午夜| 国产一区二区精品久久| 亚洲国产精品t66y| 亚洲精品孕妇| 欧美一区2区视频在线观看 | 亚洲久久在线|