• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 12,  comments - 16,  trackbacks - 0
            問題描述:
                  
            給定一個無向圖G,一條路徑經過圖G的每一條邊,且僅經過一次,這條路徑稱為歐拉路徑(Eulerian Tour),如果歐拉路徑的起始頂點和終點是同一頂點,則稱為歐拉回路(Eulerian circuit).
                
            算法:
               
            無向圖G存在歐拉路徑的充要條件:G是連通的,且至多除兩個點外(可以為0,連接圖不可能有且僅有一個頂點的度為奇數)其它所有頂點的度為偶數.
               
            無向圖G存在歐拉回路的充要條件:G是連通的且所有頂點的度為偶數;
                
            算法描述:
                
             1 tour: 數組,用于存儲歐拉路徑,反序輸出即為歐拉路徑
             2 pos: int      
             3 
               find_eulerian_circuit()      
             4 {             
             5     pos=0;            
             6     find_circuit(1);      
             7 }     
             8 
               find_eulerian_tour()     
             9 {            
            10    find a vertex i ,the degree of which is odd           
            11    pos=0;            
            12    find_circuit(i);    
            13 }      
            14 
               find_circuit(vertex i)      
            15 {         
            16     while(exist j,(i,j) is the edge of G)          
            17     {               
            18        remove edge(i,j);                
            19        find_circuit(j);           
            20     }            
            21     tour[pos++]=i;      
            22 
            23 
             

             USACO  3.2 Riding the fence,就是一個求歐拉路徑的問題.
             
            問題描述:    

            Farmer John owns a large number of fences that must be repaired annually. He traverses the fences by riding a horse along each and every one of them (and nowhere else) and fixing the broken parts.

            Farmer John is as lazy as the next farmer and hates to ride the same fence twice. Your program must read in a description of a network of fences and tell Farmer John a path to traverse each fence length exactly once, if possible. Farmer J can, if he wishes, start and finish at any fence intersection.

            Every fence connects two fence intersections, which are numbered inclusively from 1 through 500 (though some farms have far fewer than 500 intersections). Any number of fences (>=1) can meet at a fence intersection. It is always possible to ride from any fence to any other fence (i.e., all fences are "connected").

            Your program must output the path of intersections that, if interpreted as a base 500 number, would have the smallest magnitude.

            There will always be at least one solution for each set of input data supplied to your program for testing.

            PROGRAM NAME: fence

            INPUT FORMAT

            Line 1:

            The number of fences, F (1 <= F <= 1024)

            Line 2..F+1:

            A pair of integers (1 <= i,j <= 500) that tell which pair of intersections this fence connects.

            SAMPLE INPUT (file fence.in)

            9

            1 2

            2 3

            3 4

            4 2

            4 5

            2 5

            5 6

            5 7

            4 6

            OUTPUT FORMAT

            The output consists of F+1 lines, each containing a single integer. Print the number of the starting intersection on the first line, the next intersection's number on the next line, and so on, until the final intersection on the last line. There might be many possible answers to any given input set, but only one is ordered correctly.

            SAMPLE OUTPUT (file fence.out)

            1

            2

            3

            4

            2

            5

            4

            6

            5

            7

               解答:簡單的歐拉路徑問題,圖采用鄰接表存儲,附原碼

              
            /*
            ID: kuramaw1
            PROG: fence
            LANG: C++
            */

            #include 
            <fstream>

            using std::ifstream;
            using std::ofstream;
            using std::endl;

            #ifdef _DEBUG
            #include 
            <iostream>
            using std::cout;
            #endif

            #define  MAX_V 500
            #define  MAX_EDGE 1025

            #define  MAX(a,b) ((a)>(b)?(a):(b))

            struct grapha
            {
                
            struct node
                {
                    
            short v;
                    node 
            * next;
                    node(
            const short _v=-1):v(_v),next(NULL)
                    {

                    }
                    
                };

                
            struct ver
                {
                    node 
            * r;
                    
            short d;//degree
                    ver():d(0)
                    {
                        r
            =new node();

                    }
                    
            ~ver()
                    {
                        node 
            * n=r;
                        
            while(n!=NULL)
                        {
                            node 
            * t=n;
                            n
            =n->next;
                            delete t;
                        }
                    }
                    inline 
            void add_neighbor(const short &v)
                    {
                        node 
            * t=new node(v);
                        node 
            * p=r;
                        node 
            * n=p->next;
                        
            while(n!=NULL && v>n->v)
                        {
                            p
            =n;
                            n
            =n->next;
                        }
                        p
            ->next=t;
                        t
            ->next=n;
                        d
            ++;
                    }
                    inline 
            void  remove_neighbor(const short &v)
                    {
                        node 
            * p=r;
                        node 
            * n=p->next;
                        
            while(n!=NULL && v!=n->v)
                        {
                            p
            =n;
                            n
            =n->next;
                        }
                        
            if(n!=NULL)
                        {
                            p
            ->next=n->next;
                            delete n;
                            d
            --;
                        }

                    }
                };

                ver v[MAX_V];
                
            short n;
                
            short * tour;
                
            short pos;

                grapha():n(
            0),tour(NULL)
                {

                }

                
            void add_edge(const short  &_u,const short &_v)
                {
                    v[_u
            -1].add_neighbor(_v-1);
                    v[_v
            -1].add_neighbor(_u-1);
                    
            short t=MAX(_u,_v);
                    
            if(t>n)
                        n
            =t;
                }

                
            void find_tour(const short &s)
                {
                        
            while(v[s].d>0)
                        {
                            
            short j=v[s].r->next->v;
                            v[s].remove_neighbor(j);
                            v[j].remove_neighbor(s);
                            find_tour(j);
                        }
                        tour[pos
            ++]=s+1;

                }

                
            void Eulerian_tour(short * _tour)
                {
                    tour
            =_tour;
                    pos
            =0;
                    
            bool b=false;
                    
            for(int i=0;i<n;i++)
                     
            if(v[i].d % 2!=0)
                     {
                         find_tour(i);
                         b
            =true;
                         
            break;
                     }
                   
            if(!b)
                       find_tour(
            0);

                }


            };

            grapha g;
            short tour[MAX_EDGE];
            short f;
            int main()
            {
                ifstream 
            in("fence.in");
                
            in>>f;
                
            for(short i=0;i<f;i++)
                {
                    
            short u,v;
                    
            in>>u>>v;
                    g.add_edge(u,v);
                }

                
            //do
                g.Eulerian_tour(tour);



                
            //out
                ofstream out("fence.out");
                
            for(int i=f;i>=0;i--)
                 
            out<<tour[i]<<endl;
                
            out.close();
            }

                
            posted on 2009-08-12 21:18 kuramawzw 閱讀(598) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            <2009年8月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            常用鏈接

            留言簿(5)

            隨筆分類

            隨筆檔案

            文章檔案

            Algorithm

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久人人爽人人爽人人av东京热| 久久经典免费视频| 成人国内精品久久久久影院| 久久免费小视频| 色婷婷久久久SWAG精品| 久久夜色精品国产亚洲av| 怡红院日本一道日本久久| 久久国产精品一区| 麻豆一区二区99久久久久| 国产精品va久久久久久久| 久久婷婷五月综合色高清 | 99999久久久久久亚洲| 久久高潮一级毛片免费| 久久丫精品国产亚洲av不卡| 激情综合色综合久久综合| 精品免费久久久久久久| 理论片午午伦夜理片久久 | 无码精品久久一区二区三区| 国产成人精品久久二区二区| 久久综合久久综合亚洲| 久久亚洲AV无码西西人体| 久久er热视频在这里精品| 欧美丰满熟妇BBB久久久| 香港aa三级久久三级老师2021国产三级精品三级在 | 久久亚洲国产最新网站| 18岁日韩内射颜射午夜久久成人| 精品久久人人爽天天玩人人妻| 精品久久人人妻人人做精品| 久久99国产精一区二区三区| 久久中文骚妇内射| 国产亚洲美女精品久久久2020| 亚洲精品美女久久久久99小说 | 久久精品二区| 一本大道加勒比久久综合| 国产精品无码久久综合| 国产三级久久久精品麻豆三级| 99蜜桃臀久久久欧美精品网站| 2020久久精品亚洲热综合一本| 伊人久久成人成综合网222| 久久免费国产精品| 国产精品久久婷婷六月丁香|