• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁(yè) :: 聯(lián)系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團(tuán)隊(duì)

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2211) 評(píng)論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標(biāo)準(zhǔn)的匈牙利
            贊一個(gè)!  回復(fù)  更多評(píng)論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯(cuò)..
            但是我不是很懂啊  回復(fù)  更多評(píng)論
              

            亚洲国产天堂久久综合| 一本久久a久久精品综合香蕉| 精品少妇人妻av无码久久| 国产精品99精品久久免费| 国产精品热久久无码av| 伊人久久大香线蕉成人| 99久久精品午夜一区二区| 久久av高潮av无码av喷吹| 日韩欧美亚洲综合久久| 亚洲成色999久久网站| 久久久久se色偷偷亚洲精品av| 久久er热视频在这里精品| 亚洲国产精品综合久久网络| 国内精品九九久久久精品| 久久综合鬼色88久久精品综合自在自线噜噜| 午夜精品久久久久久久久| 久久综合精品国产一区二区三区 | 久久久久婷婷| A狠狠久久蜜臀婷色中文网| 国产精品久久久久久久app | 精品久久久久久99人妻| 久久99精品久久久久久| 久久夜色精品国产噜噜亚洲AV| 久久精品无码一区二区三区免费| 99久久精品国产麻豆| 成人午夜精品无码区久久| 亚洲国产成人精品女人久久久| 久久精品国产99国产精偷| 久久精品国产精品国产精品污 | 久久久久无码中| 久久精品国产亚洲5555| 久久99精品久久久久久齐齐| 久久综合综合久久97色| 国产精品久久久久影院色| 欧美一区二区精品久久| 99久久夜色精品国产网站| 伊人色综合久久天天| 精品久久久久国产免费 | 国产精品久久久久久久久软件 | 亚洲人成无码网站久久99热国产| 久久久久久久久久久免费精品|