• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團隊

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2209) 評論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標準的匈牙利
            贊一個!  回復  更多評論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯..
            但是我不是很懂啊  回復  更多評論
              

            国产精品亚洲综合久久| 伊人久久大香线蕉综合Av | 久久久久亚洲精品日久生情| 香蕉久久夜色精品国产2020| 久久强奷乱码老熟女网站| 久久成人影院精品777| 久久精品成人| 亚洲AV成人无码久久精品老人| 久久777国产线看观看精品| 久久精品国产精品亚洲艾草网美妙 | 精品久久久无码人妻中文字幕豆芽| 97久久精品人人做人人爽| 精品久久久久久久国产潘金莲| 国产精品女同久久久久电影院| 久久久久久亚洲精品无码| 久久人人爽人人爽人人片av高请| 伊人久久免费视频| 伊人久久精品无码二区麻豆| 久久久久久一区国产精品| 久久久精品一区二区三区| 无码日韩人妻精品久久蜜桃| 久久国产香蕉视频| 91亚洲国产成人久久精品| 国产精品久久久久久吹潮| 久久久久久国产精品美女| 日韩十八禁一区二区久久| 久久精品这里热有精品| AAA级久久久精品无码片| 久久99久久99精品免视看动漫| 久久精品国产福利国产琪琪| 办公室久久精品| 久久亚洲国产欧洲精品一| 9久久9久久精品| 青青青青久久精品国产h| 国产三级久久久精品麻豆三级| 日产精品久久久久久久| 亚洲七七久久精品中文国产| 久久久久久国产精品美女| 久久久久99精品成人片| 一本一本久久a久久精品综合麻豆| 欧美伊人久久大香线蕉综合69|