• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            The Way of C++

              C++博客 :: 首頁(yè) :: 聯(lián)系 :: 聚合  :: 管理
              55 Posts :: 0 Stories :: 19 Comments :: 0 Trackbacks

            公告

            The first time i use this blog, i will write something that i learn which i think is worth write down.

            常用鏈接

            留言簿(3)

            我參與的團(tuán)隊(duì)

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

               Bipartite graph is the graph which include two sets(name X,and Y) and every edge in the graph has the rule that one point is in X,the other is in  Y. The mostly problem is finding the Maximum Bipartite Matching, which mean find the maximum edges in the case of keeping  the points of the edges only connecting to one edge. The other problem is the perfect matching, which means that all the vector of the graph is included in the match edges. And the solution to find the minimum number of vectors ( either in X and Y) making every edge connecting to these vectors is called the minimum coverage . Usually, we have the equation that " minimum coverage number = maximum bipartite matching". There is another problem called maximum independent set problem. This problem request to find the maximum number of M(the number of vector) which there are no edges connect to in the graph that contain N vectors. This problem can be transformed into the maximum bipartite matching problem if the conditions can be satisfied. And we have the result that " the maximum independent set vector number M= N- Maximum bipartite matching number ".
               One way to solve the maximum bipartite matching problem is the method which is called Hungary Algorithm. There are many problems in the POJ which can be solved by Hungary Algorithm as long as it's a maximum tipartite mathcing or can be transformed into.  As an example ,you can view the problem discription in the link  . The following is my code. (link:  http://acm.pku.edu.cn/JudgeOnline/problem?id=1325)
                Plz forgive my poor written English, but everyone improve it by making mistake and attempting ,right? -_-

             1
             2#include<stdio.h>
             3#include<string.h>
             4#include<iostream>
             5using namespace std;
             6const int MAX= 110;
             7int u,v,k;//u:the left node number,v:the right node number
             8bool c[MAX][MAX];//c[i][j] indicate that i of left connect to the j of right, begin with 0
             9
            10int um[MAX],vm[MAX];//um[i] indicate the j of the right that connect to i, they are matched . so is vm[j]
            11bool s[MAX];//s[j] check whether j of the right has been used in one round of finding the path
            12
            13bool Find(int u){
            14    int j;
            15    for(j=1;j<v;j++){
            16        if(c[u][j]&&!s[j]){
            17            s[j]=true;
            18            if(!vm[j]||Find(vm[j])){
            19                um[u]=j;
            20                vm[j]=u;
            21                return true;
            22            }
            23        }
            24    }
            25    return false;
            26}
            27                
            28
            29int Match(){
            30    memset(um,0,sizeof(um));
            31    memset(vm,0,sizeof(vm));
            32    int ret=0;
            33    int i;
            34    for(i=1;i<u;i++)
            35        if(!um[i]){
            36            memset(s,false,sizeof(s));
            37            if(Find(i))
            38                ret++;
            39        }
            40    
            41    return ret;
            42}
            43
            44
            45int main(){
            46    
            47    while(scanf("%d%d%d",&u,&v,&k)&&u){
            48        memset(c,0,sizeof(c));
            49        int i,a,b,d;
            50        for(i=0;i<k;i++){
            51            scanf("%d%d%d",&a,&b,&d);
            52            if(b&&d)
            53                c[b][d]=1;
            54        }
            55        printf("%d\n",Match());
            56    }
            57    return 1;
            58}


               

            posted on 2007-12-21 14:53 koson 閱讀(2213) 評(píng)論(2)  編輯 收藏 引用 所屬分類: DataStruct And Algorithm

            Feedback

            # re: Maximum Bipartite Matching 2007-12-21 18:22 winsty
            好標(biāo)準(zhǔn)的匈牙利
            贊一個(gè)!  回復(fù)  更多評(píng)論
              

            # re: Maximum Bipartite Matching 2007-12-22 11:51 在線軟件
            不錯(cuò)..
            但是我不是很懂啊  回復(fù)  更多評(píng)論
              

            www.久久99| 久久精品国产免费观看| 久久夜色精品国产亚洲| 久久电影网| 久久A级毛片免费观看| 欧美伊香蕉久久综合类网站| 亚洲国产成人久久综合碰| 久久久久久夜精品精品免费啦 | 狠狠精品干练久久久无码中文字幕| 久久青青草原精品国产软件 | 日韩精品无码久久久久久| 国产精品热久久毛片| 久久影院综合精品| 亚洲国产高清精品线久久| 一级做a爰片久久毛片人呢| 久久国产乱子伦免费精品| 国产精品99久久久久久宅男小说| 99久久国产热无码精品免费久久久久| 久久久久av无码免费网| 日韩十八禁一区二区久久| 国产精品久久久久乳精品爆 | 青青草原综合久久| 97久久久久人妻精品专区| 久久国产精品成人影院| 国产激情久久久久久熟女老人| 欧美成a人片免费看久久| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 亚洲国产精品无码久久久久久曰| 久久精品国产免费| 久久久久久久99精品免费观看| 国内精品久久久久伊人av| 人妻丰满AV无码久久不卡| 精品久久人人爽天天玩人人妻| 国产精品美女久久福利网站| 久久福利资源国产精品999| 欧美日韩精品久久久久| 精品久久久久久无码不卡| 久久久久久久精品成人热色戒| A级毛片无码久久精品免费| 色妞色综合久久夜夜| 国内精品久久九九国产精品|