青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

我輩豈是蓬蒿人!

C++ && keyWordSpotting

  C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
  11 Posts :: 0 Stories :: 4 Comments :: 0 Trackbacks

常用鏈接

留言簿(9)

我參與的團隊

搜索

  •  

積分與排名

  • 積分 - 7323
  • 排名 - 1369

最新評論

閱讀排行榜

評論排行榜

Syntax:
														
1?#include?<vector>
2?void?assign(?size_type?num,?const?TYPE&?val?);
3?void?assign(?input_iterator?start,?input_iterator?end?);

The assign() function either gives the current vector the values from start to end, or gives it num copies of val.

This function will destroy the previous contents of the vector.

For example, the following code uses assign() to put 10 copies of the integer 42 into a vector:

 vector<int> v;
 v.assign( 10, 42 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << v[i] << " ";
 }
 cout << endl;            

The above code displays the following output:

 42 42 42 42 42 42 42 42 42 42          

The next example shows how assign() can be used to copy one vector to another:

 vector<int> v1;
 for( int i = 0; i < 10; i++ ) {
   v1.push_back( i );
 }              

 vector<int> v2;
 v2.assign( v1.begin(), v1.end() );             

 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, the above code displays the following output:

 0 1 2 3 4 5 6 7 8 9

back
Syntax:
				
1?#include?<vector>
2?TYPE&?back();
3?const?TYPE&?back()?const;

The back() function returns a reference to the last element in the vector.

For example:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 cout << "The first element is " << v.front()
      << " and the last element is " << v.back() << endl;           

This code produces the following output:

 The first element is 0 and the last element is 4               


at
Syntax:
  #include <vector>
  TYPE& at( size_type loc );
  const TYPE& at( size_type loc ) const;

The at() function returns a reference to the element in the vector at index loc. The at() function is safer than the [] operator, because it won't let you reference items outside the bounds of the vector.

For example, consider the following code:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

This code overrunns the end of the vector, producing potentially dangerous results. The following code would be much safer:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v.at(i) << endl;
 }              

Instead of attempting to read garbage values from memory, the at() function will realize that it is about to overrun the vector and will throw an exception.

capacity
Syntax:
  #include <vector>
  size_type capacity() const;

The capacity() function returns the number of elements that the vector can hold before it will need to allocate more space.

For example, the following code uses two different methods to set the capacity of two vectors. One method passes an argument to the constructor that suggests an initial size, the other method calls the reserve function to achieve a similar goal:

 vector<int> v1(10);
 cout << "The capacity of v1 is " << v1.capacity() << endl;
 vector<int> v2;
 v2.reserve(20);
 cout << "The capacity of v2 is " << v2.capacity() << endl;         

When run, the above code produces the following output:

 The capacity of v1 is 10
 The capacity of v2 is 20               

C++ containers are designed to grow in size dynamically. This frees the programmer from having to worry about storing an arbitrary number of elements in a container. However, sometimes the programmer can improve the performance of her program by giving hints to the compiler about the size of the containers that the program will use. These hints come in the form of the reserve() function and the constructor used in the above example, which tell the compiler how large the container is expected to get.

The capacity() function runs in constant time.


begin
Syntax:
  #include <vector>
  iterator begin();
  const_iterator begin() const;

The function begin() returns an iterator to the first element of the vector. begin() should run in constant time.

For example, the following code uses begin() to initialize an iterator that is used to traverse a list:

   // Create a list of characters
   list<char> charList;
   for( int i=0; i < 10; i++ ) {
     charList.push_front( i + 65 );
   }
   // Display the list
   list<char>::iterator theIterator;
   for( theIterator = charList.begin(); theIterator != charList.end(); theIterator++ ) {
     cout << *theIterator;
   }            
max_size
Syntax:
  #include <vector>
  size_type max_size() const;

The max_size() function returns the maximum number of elements that the vector can hold. The max_size() function should not be confused with the size() or capacity() functions, which return the number of elements currently in the vector and the the number of elements that the vector will be able to hold before more memory will have to be allocated, respectively.

clear
Syntax:
  #include <vector>
  void clear();

The function clear() deletes all of the elements in the vector. clear() runs in linear time.

empty
Syntax:
  #include <vector>
  bool empty() const;

The empty() function returns true if the vector has no elements, false otherwise.

For example, the following code uses empty() as the stopping condition on a (C/C++ Keywords) while loop to clear a vector and display its contents in reverse order:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 while( !v.empty() ) {
   cout << v.back() << endl;
   v.pop_back();
 }              
end
Syntax:
  #include <vector>
  iterator end();
  const_iterator end() const;

The end() function returns an iterator just past the end of the vector.

Note that before you can access the last element of the vector using an iterator that you get from a call to end(), you'll have to decrement the iterator first. This is because end() doesn't point to the end of the vector; it points just past the end of the vector.

For example, in the following code, the first "cout" statement will display garbage, whereas the second statement will actually display the last element of the vector:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  int bad_val = *(v1.end());
  cout << "bad_val is " << bad_val << endl;

  int good_val = *(v1.end() - 1);
  cout << "good_val is " << good_val << endl;

The next example shows how begin() and end() can be used to iterate through all of the members of a vector:

 vector<int> v1( 5, 789
  ); vector<int>::iterator it; for( it = v1.begin(); it !=
  v1.end(); it++ ) { cout << *it << endl; } 

The iterator is initialized with a call to begin(). After the body of the loop has been executed, the iterator is incremented and tested to see if it is equal to the result of calling end(). Since end() returns an iterator pointing to an element just after the last element of the vector, the loop will only stop once all of the elements of the vector have been displayed.

end() runs in constant time.


erase
Syntax:
  #include <vector>
  iterator erase( iterator loc );
  iterator erase( iterator start, iterator end );

The erase() function either deletes the element at location loc, or deletes the elements between start and end (including start but not including end). The return value is the element after the last element erased.

The first version of erase (the version that deletes a single element at location loc) runs in constant time for lists and linear time for vectors, dequeues, and strings. The multiple-element version of erase always takes linear time.

For example:

 // Create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 int size = alphaVector.size();
 vector<char>::iterator startIterator;
 vector<char>::iterator tempIterator;
 for( int i=0; i < size; i++ ) {
   startIterator = alphaVector.begin();
   alphaVector.erase( startIterator );
   // Display the vector
   for( tempIterator = alphaVector.begin(); tempIterator != alphaVector.end(); tempIterator++ ) {
     cout << *tempIterator;
   }
   cout << endl;
 }              

That code would display the following output:

 BCDEFGHIJ
 CDEFGHIJ
 DEFGHIJ
 EFGHIJ
 FGHIJ
 GHIJ
 HIJ
 IJ
 J              

In the next example, erase() is called with two iterators to delete a range of elements from a vector:

 // create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 // display the complete vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

 // use erase to remove all but the first two and last three elements
 // of the vector
 alphaVector.erase( alphaVector.begin()+2, alphaVector.end()-3 );
 // display the modified vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

When run, the above code displays:

 ABCDEFGHIJ
 ABHIJ          

front
Syntax:
  #include <vector>
  TYPE& front();
  const TYPE& front() const;

The front() function returns a reference to the first element of the vector, and runs in constant time.


insert
Syntax:
  #include <vector>
  iterator insert( iterator loc, const TYPE& val );
  void insert( iterator loc, size_type num, const TYPE& val );
  template<TYPE> void insert( iterator loc, input_iterator start, input_iterator end );

The insert() function either:

  • inserts val before loc, returning an iterator to the element inserted,
  • inserts num copies of val before loc, or
  • inserts the elements from start to end before loc.

Note that inserting elements into a vector can be relatively time-intensive, since the underlying data structure for a vector is an array. In order to insert data into an array, you might need to displace a lot of the elements of that array, and this can take linear time. If you are planning on doing a lot of insertions into your vector and you care about speed, you might be better off using a container that has a linked list as its underlying data structure (such as a List or a Deque).

For example, the following code uses the insert() function to splice four copies of the character 'C' into a vector of characters:

 // Create a vector, load it with the first 10 characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }              

 // Insert four C's into the vector
 vector<char>::iterator theIterator = alphaVector.begin();
 alphaVector.insert( theIterator, 4, 'C' );             

 // Display the vector
 for( theIterator = alphaVector.begin(); theIterator != alphaVector.end(); theIterator++ )    {
   cout << *theIterator;
 }              

This code would display:

 CCCCABCDEFGHIJ         

Here is another example of the insert() function. In this code, insert() is used to append the contents of one vector onto the end of another:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  vector<int> v2;
  v2.push_back( 5 );
  v2.push_back( 6 );
  v2.push_back( 7 );
  v2.push_back( 8 );

  cout << "Before, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

  v2.insert( v2.end(), v1.begin(), v1.end() );

  cout << "After, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

When run, this code displays:

  Before, v2 is: 5 6 7 8
  After, v2 is: 5 6 7 8 0 1 2 3

Vector constructors
Syntax:
  #include <vector>
  vector();
  vector( const vector& c );
  vector( size_type num, const TYPE& val = TYPE() );
  vector( input_iterator start, input_iterator end );
  ~vector();

The default vector constructor takes no arguments, creates a new instance of that vector.

The second constructor is a default copy constructor that can be used to create a new vector that is a copy of the given vector c.

The third constructor creates a vector with space for num objects. If val is specified, each of those objects will be given that value. For example, the following code creates a vector consisting of five copies of the integer 42:

 vector<int> v1( 5, 42 );         

The last constructor creates a vector that is initialized to contain the elements between start and end. For example:

 // create a vector of random integers
 cout << "original vector: ";
 vector<int> v;
 for( int i = 0; i < 10; i++ ) {
   int num = (int) rand() % 10;
   cout << num << " ";
   v.push_back( num );
 }
 cout << endl;            

 // find the first element of v that is even
 vector<int>::iterator iter1 = v.begin();
 while( iter1 != v.end() && *iter1 % 2 != 0 ) {
   iter1++;
 }              

 // find the last element of v that is even
 vector<int>::iterator iter2 = v.end();
 do {
   iter2--;
 } while( iter2 != v.begin() && *iter2 % 2 != 0 );              

 cout << "first even number: " << *iter1 << ", last even number: " << *iter2 << endl;         

 cout << "new vector: ";
 vector<int> v2( iter1, iter2 );
 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, this code displays the following output:

 original vector: 1 9 7 9 2 7 2 1 9 8
 first even number: 2, last even number: 8
 new vector: 2 7 2 1 9          

All of these constructors run in linear time except the first, which runs in constant time.

The default destructor is called when the vector should be destroyed.


pop_back
Syntax:
  #include <vector>
  void pop_back();

The pop_back() function removes the last element of the vector.

pop_back() runs in constant time.


push_back
Syntax:
  #include <vector>
  void push_back( const TYPE& val );

The push_back() function appends val to the end of the vector.

For example, the following code puts 10 integers into a list:

   list<int> the_list;
   for( int i = 0; i < 10; i++ )
     the_list.push_back( i );           

When displayed, the resulting list would look like this:

 0 1 2 3 4 5 6 7 8 9            

push_back() runs in constant time.


rbegin
Syntax:
  #include <vector>
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;

The rbegin() function returns a reverse_iterator to the end of the current vector.

rbegin() runs in constant time.


rend
Syntax:
  #include <vector>
  reverse_iterator rend();
  const_reverse_iterator rend() const;

The function rend() returns a reverse_iterator to the beginning of the current vector.

rend() runs in constant time.


reserve
Syntax:
  #include <vector>
  void reserve( size_type size );

The reserve() function sets the capacity of the vector to at least size.

reserve() runs in linear time.


resize
Syntax:
  #include <vector>
  void resize( size_type num, const TYPE& val = TYPE() );

The function resize() changes the size of the vector to size. If val is specified then any newly-created elements will be initialized to have a value of val.

This function runs in linear time.


size
Syntax:
  #include <vector>
  size_type size() const;

The size() function returns the number of elements in the current vector.


swap
Syntax:
  #include <vector>
  void swap( const container& from );

The swap() function exchanges the elements of the current vector with those of from. This function operates in constant time.

For example, the following code uses the swap() function to exchange the values of two strings:

   string first( "This comes first" );
   string second( "And this is second" );
   first.swap( second );
   cout << first << endl;
   cout << second << endl;          

The above code displays:

   And this is second
   This comes first             

Vector operators
Syntax:
  #include <vector>
  TYPE& operator[]( size_type index );
  const TYPE& operator[]( size_type index ) const;
  vector operator=(const vector& c2);
  bool operator==(const vector& c1, const vector& c2);
  bool operator!=(const vector& c1, const vector& c2);
  bool operator<(const vector& c1, const vector& c2);
  bool operator>(const vector& c1, const vector& c2);
  bool operator<=(const vector& c1, const vector& c2);
  bool operator>=(const vector& c1, const vector& c2);

All of the C++ containers can be compared and assigned with the standard comparison operators: ==, !=, <=, >=, <, >, and =. Individual elements of a vector can be examined with the [] operator.

Performing a comparison or assigning one vector to another takes linear time. The [] operator runs in constant time.

Two vectors are equal if:

  1. Their size is the same, and
  2. Each member in location i in one vector is equal to the the member in location i in the other vector.

Comparisons among vectors are done lexicographically.

For example, the following code uses the [] operator to access all of the elements of a vector:

 vector<int> v( 5, 1 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

posted on 2006-08-13 19:52 keyws 閱讀(687) 評論(0)  編輯 收藏 引用 所屬分類: STL

只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一区二区不卡在线视频 午夜欧美不卡在| 国产精品日韩精品欧美精品| 日韩视频永久免费| 欧美日韩国产欧| 欧美在线视频导航| 亚洲精品男同| 久久成人av少妇免费| 亚洲精品一区中文| 在线免费不卡视频| 国产日韩欧美在线看| 欧美日韩一区二区三区在线| 国产精品99久久久久久久vr | 91久久精品美女| 性欧美暴力猛交69hd| 亚洲人体影院| 日韩亚洲视频| 夜夜嗨av色一区二区不卡| 久久视频在线看| 久久最新视频| 欧美成ee人免费视频| 免费成人网www| 欧美巨乳在线| 欧美午夜不卡视频| 国产日韩欧美a| 亚洲国产老妈| 老**午夜毛片一区二区三区| 欧美日韩免费一区二区三区视频| 免费在线日韩av| 母乳一区在线观看| 欧美色大人视频| 好看的av在线不卡观看| 一区二区三区无毛| 韩日成人在线| 一区二区三区毛片| 欧美在线播放一区二区| 欧美激情一区二区久久久| 免费在线观看日韩欧美| 亚洲欧洲综合| 牛夜精品久久久久久久99黑人| 欧美激情一区二区三区| 欧美日韩综合另类| 一区二区三区www| 久久精品国产欧美亚洲人人爽| 免费一区二区三区| 国产日产精品一区二区三区四区的观看方式 | 亚洲美女91| 亚洲日本成人在线观看| 在线看片成人| 国产精品推荐精品| 在线观看欧美黄色| 亚洲第一页在线| 久久青青草原一区二区| 老司机免费视频久久| 欧美成人精品激情在线观看| 久久―日本道色综合久久| 国内在线观看一区二区三区| 免费欧美在线| 亚洲精品中文字幕女同| 亚洲一本视频| 男女激情视频一区| 国产精品午夜久久| 亚洲精品一区二区三区福利| 亚洲第一福利视频| 欧美黄色aaaa| 欧美视频在线观看| 伊人狠狠色丁香综合尤物| 国产精品99久久久久久久久| 欧美高清在线一区| 欧美中文在线观看国产| 国产精品日韩在线播放| 国产精品久久777777毛茸茸| 国产一区二区剧情av在线| 亚洲欧美www| 一区二区三区.www| 欧美性大战久久久久| 欧美日韩在线另类| 国产在线乱码一区二区三区| 欧美一级电影久久| 性色av一区二区三区| 国产伊人精品| 亚洲视频免费| 亚洲欧美日韩系列| 欧美在线观看视频在线| 理论片一区二区在线| 亚洲精品1区2区| 亚洲国产日韩美| 欧美在线观看一二区| 在线观看一区| 亚洲激情一区二区| 欧美午夜理伦三级在线观看| 性一交一乱一区二区洋洋av| 亚洲黄色影院| 国产一区二区三区久久| 久久视频在线视频| 久久精品一区二区三区不卡牛牛| 国产亚洲欧洲一区高清在线观看| 欧美成人精品一区二区三区| 国产欧美成人| 亚洲一区二区免费| 极品尤物一区二区三区| 欧美 日韩 国产 一区| 合欧美一区二区三区| 亚洲欧美日韩精品久久久久| 亚洲视频一区二区在线观看| 国产精品国产三级国产普通话三级| 久久久美女艺术照精彩视频福利播放| 久久精品国产99| 一片黄亚洲嫩模| 欧美精品乱人伦久久久久久| 欧美在线91| 欧美四级在线观看| 日韩午夜av| 日韩视频在线观看一区二区| 国产美女精品视频| 免费91麻豆精品国产自产在线观看| 欧美韩国一区| 亚洲欧洲精品一区二区三区不卡 | 欧美在线视频在线播放完整版免费观看 | 久久久久一区二区三区四区| 久久综合中文色婷婷| 亚洲电影免费观看高清完整版在线观看 | 欧美另类专区| 午夜精品久久久久久久久| 午夜一区在线| 夜夜嗨av一区二区三区网站四季av| 国产三区精品| 一本色道久久加勒比精品| 亚洲精品视频在线观看免费| 99精品热视频只有精品10| 亚洲三级电影在线观看 | 亚洲欧美激情一区二区| 日韩午夜在线电影| 欧美区国产区| 亚洲永久免费观看| 久久精品亚洲国产奇米99| 国产欧美丝祙| 欧美一级片一区| 亚洲精品久久久久久下一站 | 久久成人免费日本黄色| 国产精品视频不卡| 欧美在线免费播放| 一本久久综合亚洲鲁鲁五月天| 在线日韩视频| 国语自产精品视频在线看抢先版结局| 亚洲欧洲精品一区二区三区| 欧美在线观看一二区| 欧美大片在线观看| 性做久久久久久久久| 一区二区三区免费看| 亚洲人成小说网站色在线| 国产精品久久久久一区二区三区 | 黄色在线一区| 欧美日韩亚洲天堂| 欧美不卡福利| 午夜宅男久久久| 亚洲视频欧美在线| 亚洲午夜av| 午夜日韩电影| 久久精品国产99国产精品澳门| 先锋a资源在线看亚洲| 亚洲欧美三级伦理| 久久久国产成人精品| 美脚丝袜一区二区三区在线观看| 亚洲午夜精品视频| 一区二区三区精品久久久| 在线视频精品| 一区二区高清在线观看| 亚洲午夜日本在线观看| 久久久www成人免费毛片麻豆| 欧美一区二区网站| 99亚洲精品| 欧美一区二区免费观在线| 午夜精品久久| 欧美—级在线免费片| 国产精品激情av在线播放| 久久精品免费| 久久精品在线观看| 在线看不卡av| 国语精品一区| 韩国成人理伦片免费播放| 狠狠久久亚洲欧美专区| 欧美日韩视频在线第一区| 国产精品久久影院| 国内精品嫩模av私拍在线观看 | 午夜久久99| 欧美伊人久久久久久久久影院| 久久精品国产一区二区三区| 日韩视频在线观看国产| 中文一区二区在线观看| 久久婷婷影院| 欧美日韩在线观看视频| 日韩一区二区精品在线观看| 久久er99精品| 亚洲一区二区网站| 国产精品扒开腿做爽爽爽软件| 亚洲精品黄色| 欧美成人精品h版在线观看| 久久综合久久综合这里只有精品| 尤物yw午夜国产精品视频| 欧美激情视频给我|