青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

我輩豈是蓬蒿人!

C++ && keyWordSpotting

  C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
  11 Posts :: 0 Stories :: 4 Comments :: 0 Trackbacks

常用鏈接

留言簿(9)

我參與的團隊

搜索

  •  

積分與排名

  • 積分 - 7323
  • 排名 - 1369

最新評論

閱讀排行榜

評論排行榜

Syntax:
														
1?#include?<vector>
2?void?assign(?size_type?num,?const?TYPE&?val?);
3?void?assign(?input_iterator?start,?input_iterator?end?);

The assign() function either gives the current vector the values from start to end, or gives it num copies of val.

This function will destroy the previous contents of the vector.

For example, the following code uses assign() to put 10 copies of the integer 42 into a vector:

 vector<int> v;
 v.assign( 10, 42 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << v[i] << " ";
 }
 cout << endl;            

The above code displays the following output:

 42 42 42 42 42 42 42 42 42 42          

The next example shows how assign() can be used to copy one vector to another:

 vector<int> v1;
 for( int i = 0; i < 10; i++ ) {
   v1.push_back( i );
 }              

 vector<int> v2;
 v2.assign( v1.begin(), v1.end() );             

 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, the above code displays the following output:

 0 1 2 3 4 5 6 7 8 9

back
Syntax:
				
1?#include?<vector>
2?TYPE&?back();
3?const?TYPE&?back()?const;

The back() function returns a reference to the last element in the vector.

For example:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 cout << "The first element is " << v.front()
      << " and the last element is " << v.back() << endl;           

This code produces the following output:

 The first element is 0 and the last element is 4               


at
Syntax:
  #include <vector>
  TYPE& at( size_type loc );
  const TYPE& at( size_type loc ) const;

The at() function returns a reference to the element in the vector at index loc. The at() function is safer than the [] operator, because it won't let you reference items outside the bounds of the vector.

For example, consider the following code:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

This code overrunns the end of the vector, producing potentially dangerous results. The following code would be much safer:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v.at(i) << endl;
 }              

Instead of attempting to read garbage values from memory, the at() function will realize that it is about to overrun the vector and will throw an exception.

capacity
Syntax:
  #include <vector>
  size_type capacity() const;

The capacity() function returns the number of elements that the vector can hold before it will need to allocate more space.

For example, the following code uses two different methods to set the capacity of two vectors. One method passes an argument to the constructor that suggests an initial size, the other method calls the reserve function to achieve a similar goal:

 vector<int> v1(10);
 cout << "The capacity of v1 is " << v1.capacity() << endl;
 vector<int> v2;
 v2.reserve(20);
 cout << "The capacity of v2 is " << v2.capacity() << endl;         

When run, the above code produces the following output:

 The capacity of v1 is 10
 The capacity of v2 is 20               

C++ containers are designed to grow in size dynamically. This frees the programmer from having to worry about storing an arbitrary number of elements in a container. However, sometimes the programmer can improve the performance of her program by giving hints to the compiler about the size of the containers that the program will use. These hints come in the form of the reserve() function and the constructor used in the above example, which tell the compiler how large the container is expected to get.

The capacity() function runs in constant time.


begin
Syntax:
  #include <vector>
  iterator begin();
  const_iterator begin() const;

The function begin() returns an iterator to the first element of the vector. begin() should run in constant time.

For example, the following code uses begin() to initialize an iterator that is used to traverse a list:

   // Create a list of characters
   list<char> charList;
   for( int i=0; i < 10; i++ ) {
     charList.push_front( i + 65 );
   }
   // Display the list
   list<char>::iterator theIterator;
   for( theIterator = charList.begin(); theIterator != charList.end(); theIterator++ ) {
     cout << *theIterator;
   }            
max_size
Syntax:
  #include <vector>
  size_type max_size() const;

The max_size() function returns the maximum number of elements that the vector can hold. The max_size() function should not be confused with the size() or capacity() functions, which return the number of elements currently in the vector and the the number of elements that the vector will be able to hold before more memory will have to be allocated, respectively.

clear
Syntax:
  #include <vector>
  void clear();

The function clear() deletes all of the elements in the vector. clear() runs in linear time.

empty
Syntax:
  #include <vector>
  bool empty() const;

The empty() function returns true if the vector has no elements, false otherwise.

For example, the following code uses empty() as the stopping condition on a (C/C++ Keywords) while loop to clear a vector and display its contents in reverse order:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 while( !v.empty() ) {
   cout << v.back() << endl;
   v.pop_back();
 }              
end
Syntax:
  #include <vector>
  iterator end();
  const_iterator end() const;

The end() function returns an iterator just past the end of the vector.

Note that before you can access the last element of the vector using an iterator that you get from a call to end(), you'll have to decrement the iterator first. This is because end() doesn't point to the end of the vector; it points just past the end of the vector.

For example, in the following code, the first "cout" statement will display garbage, whereas the second statement will actually display the last element of the vector:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  int bad_val = *(v1.end());
  cout << "bad_val is " << bad_val << endl;

  int good_val = *(v1.end() - 1);
  cout << "good_val is " << good_val << endl;

The next example shows how begin() and end() can be used to iterate through all of the members of a vector:

 vector<int> v1( 5, 789
  ); vector<int>::iterator it; for( it = v1.begin(); it !=
  v1.end(); it++ ) { cout << *it << endl; } 

The iterator is initialized with a call to begin(). After the body of the loop has been executed, the iterator is incremented and tested to see if it is equal to the result of calling end(). Since end() returns an iterator pointing to an element just after the last element of the vector, the loop will only stop once all of the elements of the vector have been displayed.

end() runs in constant time.


erase
Syntax:
  #include <vector>
  iterator erase( iterator loc );
  iterator erase( iterator start, iterator end );

The erase() function either deletes the element at location loc, or deletes the elements between start and end (including start but not including end). The return value is the element after the last element erased.

The first version of erase (the version that deletes a single element at location loc) runs in constant time for lists and linear time for vectors, dequeues, and strings. The multiple-element version of erase always takes linear time.

For example:

 // Create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 int size = alphaVector.size();
 vector<char>::iterator startIterator;
 vector<char>::iterator tempIterator;
 for( int i=0; i < size; i++ ) {
   startIterator = alphaVector.begin();
   alphaVector.erase( startIterator );
   // Display the vector
   for( tempIterator = alphaVector.begin(); tempIterator != alphaVector.end(); tempIterator++ ) {
     cout << *tempIterator;
   }
   cout << endl;
 }              

That code would display the following output:

 BCDEFGHIJ
 CDEFGHIJ
 DEFGHIJ
 EFGHIJ
 FGHIJ
 GHIJ
 HIJ
 IJ
 J              

In the next example, erase() is called with two iterators to delete a range of elements from a vector:

 // create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 // display the complete vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

 // use erase to remove all but the first two and last three elements
 // of the vector
 alphaVector.erase( alphaVector.begin()+2, alphaVector.end()-3 );
 // display the modified vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

When run, the above code displays:

 ABCDEFGHIJ
 ABHIJ          

front
Syntax:
  #include <vector>
  TYPE& front();
  const TYPE& front() const;

The front() function returns a reference to the first element of the vector, and runs in constant time.


insert
Syntax:
  #include <vector>
  iterator insert( iterator loc, const TYPE& val );
  void insert( iterator loc, size_type num, const TYPE& val );
  template<TYPE> void insert( iterator loc, input_iterator start, input_iterator end );

The insert() function either:

  • inserts val before loc, returning an iterator to the element inserted,
  • inserts num copies of val before loc, or
  • inserts the elements from start to end before loc.

Note that inserting elements into a vector can be relatively time-intensive, since the underlying data structure for a vector is an array. In order to insert data into an array, you might need to displace a lot of the elements of that array, and this can take linear time. If you are planning on doing a lot of insertions into your vector and you care about speed, you might be better off using a container that has a linked list as its underlying data structure (such as a List or a Deque).

For example, the following code uses the insert() function to splice four copies of the character 'C' into a vector of characters:

 // Create a vector, load it with the first 10 characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }              

 // Insert four C's into the vector
 vector<char>::iterator theIterator = alphaVector.begin();
 alphaVector.insert( theIterator, 4, 'C' );             

 // Display the vector
 for( theIterator = alphaVector.begin(); theIterator != alphaVector.end(); theIterator++ )    {
   cout << *theIterator;
 }              

This code would display:

 CCCCABCDEFGHIJ         

Here is another example of the insert() function. In this code, insert() is used to append the contents of one vector onto the end of another:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  vector<int> v2;
  v2.push_back( 5 );
  v2.push_back( 6 );
  v2.push_back( 7 );
  v2.push_back( 8 );

  cout << "Before, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

  v2.insert( v2.end(), v1.begin(), v1.end() );

  cout << "After, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

When run, this code displays:

  Before, v2 is: 5 6 7 8
  After, v2 is: 5 6 7 8 0 1 2 3

Vector constructors
Syntax:
  #include <vector>
  vector();
  vector( const vector& c );
  vector( size_type num, const TYPE& val = TYPE() );
  vector( input_iterator start, input_iterator end );
  ~vector();

The default vector constructor takes no arguments, creates a new instance of that vector.

The second constructor is a default copy constructor that can be used to create a new vector that is a copy of the given vector c.

The third constructor creates a vector with space for num objects. If val is specified, each of those objects will be given that value. For example, the following code creates a vector consisting of five copies of the integer 42:

 vector<int> v1( 5, 42 );         

The last constructor creates a vector that is initialized to contain the elements between start and end. For example:

 // create a vector of random integers
 cout << "original vector: ";
 vector<int> v;
 for( int i = 0; i < 10; i++ ) {
   int num = (int) rand() % 10;
   cout << num << " ";
   v.push_back( num );
 }
 cout << endl;            

 // find the first element of v that is even
 vector<int>::iterator iter1 = v.begin();
 while( iter1 != v.end() && *iter1 % 2 != 0 ) {
   iter1++;
 }              

 // find the last element of v that is even
 vector<int>::iterator iter2 = v.end();
 do {
   iter2--;
 } while( iter2 != v.begin() && *iter2 % 2 != 0 );              

 cout << "first even number: " << *iter1 << ", last even number: " << *iter2 << endl;         

 cout << "new vector: ";
 vector<int> v2( iter1, iter2 );
 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, this code displays the following output:

 original vector: 1 9 7 9 2 7 2 1 9 8
 first even number: 2, last even number: 8
 new vector: 2 7 2 1 9          

All of these constructors run in linear time except the first, which runs in constant time.

The default destructor is called when the vector should be destroyed.


pop_back
Syntax:
  #include <vector>
  void pop_back();

The pop_back() function removes the last element of the vector.

pop_back() runs in constant time.


push_back
Syntax:
  #include <vector>
  void push_back( const TYPE& val );

The push_back() function appends val to the end of the vector.

For example, the following code puts 10 integers into a list:

   list<int> the_list;
   for( int i = 0; i < 10; i++ )
     the_list.push_back( i );           

When displayed, the resulting list would look like this:

 0 1 2 3 4 5 6 7 8 9            

push_back() runs in constant time.


rbegin
Syntax:
  #include <vector>
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;

The rbegin() function returns a reverse_iterator to the end of the current vector.

rbegin() runs in constant time.


rend
Syntax:
  #include <vector>
  reverse_iterator rend();
  const_reverse_iterator rend() const;

The function rend() returns a reverse_iterator to the beginning of the current vector.

rend() runs in constant time.


reserve
Syntax:
  #include <vector>
  void reserve( size_type size );

The reserve() function sets the capacity of the vector to at least size.

reserve() runs in linear time.


resize
Syntax:
  #include <vector>
  void resize( size_type num, const TYPE& val = TYPE() );

The function resize() changes the size of the vector to size. If val is specified then any newly-created elements will be initialized to have a value of val.

This function runs in linear time.


size
Syntax:
  #include <vector>
  size_type size() const;

The size() function returns the number of elements in the current vector.


swap
Syntax:
  #include <vector>
  void swap( const container& from );

The swap() function exchanges the elements of the current vector with those of from. This function operates in constant time.

For example, the following code uses the swap() function to exchange the values of two strings:

   string first( "This comes first" );
   string second( "And this is second" );
   first.swap( second );
   cout << first << endl;
   cout << second << endl;          

The above code displays:

   And this is second
   This comes first             

Vector operators
Syntax:
  #include <vector>
  TYPE& operator[]( size_type index );
  const TYPE& operator[]( size_type index ) const;
  vector operator=(const vector& c2);
  bool operator==(const vector& c1, const vector& c2);
  bool operator!=(const vector& c1, const vector& c2);
  bool operator<(const vector& c1, const vector& c2);
  bool operator>(const vector& c1, const vector& c2);
  bool operator<=(const vector& c1, const vector& c2);
  bool operator>=(const vector& c1, const vector& c2);

All of the C++ containers can be compared and assigned with the standard comparison operators: ==, !=, <=, >=, <, >, and =. Individual elements of a vector can be examined with the [] operator.

Performing a comparison or assigning one vector to another takes linear time. The [] operator runs in constant time.

Two vectors are equal if:

  1. Their size is the same, and
  2. Each member in location i in one vector is equal to the the member in location i in the other vector.

Comparisons among vectors are done lexicographically.

For example, the following code uses the [] operator to access all of the elements of a vector:

 vector<int> v( 5, 1 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

posted on 2006-08-13 19:52 keyws 閱讀(687) 評論(0)  編輯 收藏 引用 所屬分類: STL

只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            尤物在线精品| 亚洲精品美女在线观看| 国产亚洲精品一区二区| 国产精品成人一区二区网站软件| 免费成人高清| 欧美精品日韩www.p站| 欧美巨乳在线观看| 欧美亚洲第一区| 国产日韩欧美一区| 好吊视频一区二区三区四区| 亚洲成人自拍视频| 日韩亚洲视频在线| 午夜精品一区二区三区四区| 久久久久一区二区| 亚洲黄色影院| 亚洲看片一区| 亚洲尤物精选| 久久综合电影| 欧美日韩精品一区二区天天拍小说| 欧美黄色小视频| 国产精品免费观看视频| 黄色国产精品一区二区三区| 亚洲国产成人porn| 亚洲影院在线| 久久夜色精品国产欧美乱极品| 鲁大师成人一区二区三区| 亚洲区一区二| 香蕉久久国产| 欧美黄色影院| 国产一区二区三区黄视频| 亚洲电影在线看| 午夜精品久久久久久久久久久久| 久久青草久久| 一区二区三区www| 久久网站免费| 国产精品九九久久久久久久| 伊人成人在线| 欧美一区在线视频| 99v久久综合狠狠综合久久| 欧美在线国产精品| 国产精品theporn88| 在线看国产日韩| 性做久久久久久久久| 欧美一区在线直播| 一区二区欧美在线| 欧美有码在线观看视频| 欧美韩日亚洲| 午夜精品影院在线观看| 亚洲毛片在线观看.| 久久精品欧美日韩精品| 亚洲肉体裸体xxxx137| 久久精品国产亚洲一区二区| 欧美午夜视频在线| 日韩亚洲国产精品| 玖玖在线精品| 亚洲男人av电影| 欧美国产亚洲另类动漫| 激情综合自拍| 久久精品1区| 亚洲欧美日韩综合| 欧美性事免费在线观看| 亚洲看片免费| 亚洲人成人99网站| 免费亚洲电影在线观看| 在线观看亚洲精品视频| 久久精品视频在线看| 亚洲欧美欧美一区二区三区| 国产精品成人观看视频国产奇米| 一本色道久久综合狠狠躁的推荐| 欧美激情成人在线| 欧美成年人视频网站欧美| 在线视频国产日韩| 亚洲第一福利在线观看| 免费日韩av电影| 亚洲精品久久久久久久久久久| 欧美va亚洲va香蕉在线| 毛片一区二区| 亚洲经典在线| 亚洲精品在线二区| 国产精品magnet| 性色av一区二区怡红| 亚洲欧洲av一区二区| 国产一区二区成人久久免费影院| 久久国产精品久久久久久电车| 午夜精品一区二区三区在线 | 久久综合狠狠| 久久婷婷丁香| 国产精品99久久不卡二区| 日韩亚洲欧美一区| 国产精品一区二区你懂的| 亚洲欧美日韩在线| 欧美一区二区私人影院日本| 伊人成人在线| 一区二区电影免费观看| 国产日韩欧美亚洲一区| 亚洲福利视频网| 国产精品日本| 欧美国产日本韩| 欧美日韩中文另类| 一色屋精品视频免费看| 另类专区欧美制服同性| 免费成人毛片| 久久―日本道色综合久久| 亚洲一区二区网站| 伊人春色精品| 亚洲区一区二区三区| 亚洲精品久久久久| 亚洲精品在线一区二区| 永久免费精品影视网站| 国产欧美日韩一区二区三区| 欧美日韩精品一区二区| 欧美连裤袜在线视频| 欧美激情在线免费观看| 免费视频亚洲| 欧美国产日韩a欧美在线观看| 欧美日本中文| 国产精品美女诱惑| 一区二区在线视频| 精品99一区二区| 在线欧美日韩| av成人免费在线| 亚洲欧美偷拍卡通变态| 欧美在线影院在线视频| 美女亚洲精品| 宅男66日本亚洲欧美视频| 久久精品五月婷婷| 欧美性大战久久久久久久| 亚洲精选视频免费看| 欧美激情一区二区三区高清视频 | 黄色国产精品一区二区三区| 日韩视频免费在线观看| 亚洲一区二区少妇| 欧美成人综合一区| 欧美一区中文字幕| 国产精品无码永久免费888| 国产九九精品| 欧美一区影院| 欧美有码在线视频| 亚洲国产专区| 欧美一区二区在线观看| 韩国一区二区在线观看| 午夜精品福利视频| 一区二区三区日韩在线观看| 毛片精品免费在线观看| 一区在线视频观看| 欧美国产乱视频| 猛男gaygay欧美视频| 亚洲精品欧美激情| 国产亚洲激情| 欧美一区二区三区免费视| 久久久国际精品| 在线亚洲一区观看| 久久狠狠一本精品综合网| 最新日韩在线视频| 午夜精品一区二区三区四区 | 欧美怡红院视频| 亚洲午夜高清视频| 亚洲伦理一区| 久久天天狠狠| 亚洲精选一区二区| 先锋资源久久| 欧美电影免费观看高清| 欧美成人中文字幕在线| 欧美三日本三级少妇三2023| 国产精品夜夜夜| 99热在这里有精品免费| 亚洲午夜精品久久久久久浪潮 | 久久成人精品| 欧美一区二区三区四区在线 | 久久综合伊人77777蜜臀| 性做久久久久久| 亚洲精品一区二区在线| 狠狠久久综合婷婷不卡| 午夜在线视频观看日韩17c| 久久精品国产2020观看福利| 欧美综合激情网| 欧美三级免费| 亚洲男女自偷自拍| 欧美精品播放| 欧美成人精品一区| 欧美日韩午夜精品| 伊人久久亚洲热| 国产一区二区三区在线观看网站| 欧美乱妇高清无乱码| 在线视频国内自拍亚洲视频| 午夜宅男久久久| 国产精品成人国产乱一区| 亚洲欧美成人在线| 国产精品―色哟哟| 亚洲国产精品成人一区二区 | 亚洲精品视频在线| 国产精品v欧美精品∨日韩| 久久精品视频网| 亚洲视频高清| 亚洲精品欧美激情| 久久精品日韩一区二区三区| 亚洲天堂av在线免费| 亚洲国产精品99久久久久久久久| 国产精品视频网站| 欧美日韩视频|