青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

我輩豈是蓬蒿人!

C++ && keyWordSpotting

  C++博客 :: 首頁 :: 聯系 :: 聚合  :: 管理
  11 Posts :: 0 Stories :: 4 Comments :: 0 Trackbacks

常用鏈接

留言簿(9)

我參與的團隊

搜索

  •  

積分與排名

  • 積分 - 7323
  • 排名 - 1369

最新評論

閱讀排行榜

評論排行榜

Syntax:
														
1?#include?<vector>
2?void?assign(?size_type?num,?const?TYPE&?val?);
3?void?assign(?input_iterator?start,?input_iterator?end?);

The assign() function either gives the current vector the values from start to end, or gives it num copies of val.

This function will destroy the previous contents of the vector.

For example, the following code uses assign() to put 10 copies of the integer 42 into a vector:

 vector<int> v;
 v.assign( 10, 42 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << v[i] << " ";
 }
 cout << endl;            

The above code displays the following output:

 42 42 42 42 42 42 42 42 42 42          

The next example shows how assign() can be used to copy one vector to another:

 vector<int> v1;
 for( int i = 0; i < 10; i++ ) {
   v1.push_back( i );
 }              

 vector<int> v2;
 v2.assign( v1.begin(), v1.end() );             

 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, the above code displays the following output:

 0 1 2 3 4 5 6 7 8 9

back
Syntax:
				
1?#include?<vector>
2?TYPE&?back();
3?const?TYPE&?back()?const;

The back() function returns a reference to the last element in the vector.

For example:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 cout << "The first element is " << v.front()
      << " and the last element is " << v.back() << endl;           

This code produces the following output:

 The first element is 0 and the last element is 4               


at
Syntax:
  #include <vector>
  TYPE& at( size_type loc );
  const TYPE& at( size_type loc ) const;

The at() function returns a reference to the element in the vector at index loc. The at() function is safer than the [] operator, because it won't let you reference items outside the bounds of the vector.

For example, consider the following code:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

This code overrunns the end of the vector, producing potentially dangerous results. The following code would be much safer:

 vector<int> v( 5, 1 );
 for( int i = 0; i < 10; i++ ) {
   cout << "Element " << i << " is " << v.at(i) << endl;
 }              

Instead of attempting to read garbage values from memory, the at() function will realize that it is about to overrun the vector and will throw an exception.

capacity
Syntax:
  #include <vector>
  size_type capacity() const;

The capacity() function returns the number of elements that the vector can hold before it will need to allocate more space.

For example, the following code uses two different methods to set the capacity of two vectors. One method passes an argument to the constructor that suggests an initial size, the other method calls the reserve function to achieve a similar goal:

 vector<int> v1(10);
 cout << "The capacity of v1 is " << v1.capacity() << endl;
 vector<int> v2;
 v2.reserve(20);
 cout << "The capacity of v2 is " << v2.capacity() << endl;         

When run, the above code produces the following output:

 The capacity of v1 is 10
 The capacity of v2 is 20               

C++ containers are designed to grow in size dynamically. This frees the programmer from having to worry about storing an arbitrary number of elements in a container. However, sometimes the programmer can improve the performance of her program by giving hints to the compiler about the size of the containers that the program will use. These hints come in the form of the reserve() function and the constructor used in the above example, which tell the compiler how large the container is expected to get.

The capacity() function runs in constant time.


begin
Syntax:
  #include <vector>
  iterator begin();
  const_iterator begin() const;

The function begin() returns an iterator to the first element of the vector. begin() should run in constant time.

For example, the following code uses begin() to initialize an iterator that is used to traverse a list:

   // Create a list of characters
   list<char> charList;
   for( int i=0; i < 10; i++ ) {
     charList.push_front( i + 65 );
   }
   // Display the list
   list<char>::iterator theIterator;
   for( theIterator = charList.begin(); theIterator != charList.end(); theIterator++ ) {
     cout << *theIterator;
   }            
max_size
Syntax:
  #include <vector>
  size_type max_size() const;

The max_size() function returns the maximum number of elements that the vector can hold. The max_size() function should not be confused with the size() or capacity() functions, which return the number of elements currently in the vector and the the number of elements that the vector will be able to hold before more memory will have to be allocated, respectively.

clear
Syntax:
  #include <vector>
  void clear();

The function clear() deletes all of the elements in the vector. clear() runs in linear time.

empty
Syntax:
  #include <vector>
  bool empty() const;

The empty() function returns true if the vector has no elements, false otherwise.

For example, the following code uses empty() as the stopping condition on a (C/C++ Keywords) while loop to clear a vector and display its contents in reverse order:

 vector<int> v;
 for( int i = 0; i < 5; i++ ) {
   v.push_back(i);
 }
 while( !v.empty() ) {
   cout << v.back() << endl;
   v.pop_back();
 }              
end
Syntax:
  #include <vector>
  iterator end();
  const_iterator end() const;

The end() function returns an iterator just past the end of the vector.

Note that before you can access the last element of the vector using an iterator that you get from a call to end(), you'll have to decrement the iterator first. This is because end() doesn't point to the end of the vector; it points just past the end of the vector.

For example, in the following code, the first "cout" statement will display garbage, whereas the second statement will actually display the last element of the vector:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  int bad_val = *(v1.end());
  cout << "bad_val is " << bad_val << endl;

  int good_val = *(v1.end() - 1);
  cout << "good_val is " << good_val << endl;

The next example shows how begin() and end() can be used to iterate through all of the members of a vector:

 vector<int> v1( 5, 789
  ); vector<int>::iterator it; for( it = v1.begin(); it !=
  v1.end(); it++ ) { cout << *it << endl; } 

The iterator is initialized with a call to begin(). After the body of the loop has been executed, the iterator is incremented and tested to see if it is equal to the result of calling end(). Since end() returns an iterator pointing to an element just after the last element of the vector, the loop will only stop once all of the elements of the vector have been displayed.

end() runs in constant time.


erase
Syntax:
  #include <vector>
  iterator erase( iterator loc );
  iterator erase( iterator start, iterator end );

The erase() function either deletes the element at location loc, or deletes the elements between start and end (including start but not including end). The return value is the element after the last element erased.

The first version of erase (the version that deletes a single element at location loc) runs in constant time for lists and linear time for vectors, dequeues, and strings. The multiple-element version of erase always takes linear time.

For example:

 // Create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 int size = alphaVector.size();
 vector<char>::iterator startIterator;
 vector<char>::iterator tempIterator;
 for( int i=0; i < size; i++ ) {
   startIterator = alphaVector.begin();
   alphaVector.erase( startIterator );
   // Display the vector
   for( tempIterator = alphaVector.begin(); tempIterator != alphaVector.end(); tempIterator++ ) {
     cout << *tempIterator;
   }
   cout << endl;
 }              

That code would display the following output:

 BCDEFGHIJ
 CDEFGHIJ
 DEFGHIJ
 EFGHIJ
 FGHIJ
 GHIJ
 HIJ
 IJ
 J              

In the next example, erase() is called with two iterators to delete a range of elements from a vector:

 // create a vector, load it with the first ten characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }
 // display the complete vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

 // use erase to remove all but the first two and last three elements
 // of the vector
 alphaVector.erase( alphaVector.begin()+2, alphaVector.end()-3 );
 // display the modified vector
 for( int i = 0; i < alphaVector.size(); i++ ) {
   cout << alphaVector[i];
 }
 cout << endl;            

When run, the above code displays:

 ABCDEFGHIJ
 ABHIJ          

front
Syntax:
  #include <vector>
  TYPE& front();
  const TYPE& front() const;

The front() function returns a reference to the first element of the vector, and runs in constant time.


insert
Syntax:
  #include <vector>
  iterator insert( iterator loc, const TYPE& val );
  void insert( iterator loc, size_type num, const TYPE& val );
  template<TYPE> void insert( iterator loc, input_iterator start, input_iterator end );

The insert() function either:

  • inserts val before loc, returning an iterator to the element inserted,
  • inserts num copies of val before loc, or
  • inserts the elements from start to end before loc.

Note that inserting elements into a vector can be relatively time-intensive, since the underlying data structure for a vector is an array. In order to insert data into an array, you might need to displace a lot of the elements of that array, and this can take linear time. If you are planning on doing a lot of insertions into your vector and you care about speed, you might be better off using a container that has a linked list as its underlying data structure (such as a List or a Deque).

For example, the following code uses the insert() function to splice four copies of the character 'C' into a vector of characters:

 // Create a vector, load it with the first 10 characters of the alphabet
 vector<char> alphaVector;
 for( int i=0; i < 10; i++ ) {
   alphaVector.push_back( i + 65 );
 }              

 // Insert four C's into the vector
 vector<char>::iterator theIterator = alphaVector.begin();
 alphaVector.insert( theIterator, 4, 'C' );             

 // Display the vector
 for( theIterator = alphaVector.begin(); theIterator != alphaVector.end(); theIterator++ )    {
   cout << *theIterator;
 }              

This code would display:

 CCCCABCDEFGHIJ         

Here is another example of the insert() function. In this code, insert() is used to append the contents of one vector onto the end of another:

  vector<int> v1;
  v1.push_back( 0 );
  v1.push_back( 1 );
  v1.push_back( 2 );
  v1.push_back( 3 );

  vector<int> v2;
  v2.push_back( 5 );
  v2.push_back( 6 );
  v2.push_back( 7 );
  v2.push_back( 8 );

  cout << "Before, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

  v2.insert( v2.end(), v1.begin(), v1.end() );

  cout << "After, v2 is: ";
  for( int i = 0; i < v2.size(); i++ ) {
    cout << v2[i] << " ";
  }
  cout << endl;

When run, this code displays:

  Before, v2 is: 5 6 7 8
  After, v2 is: 5 6 7 8 0 1 2 3

Vector constructors
Syntax:
  #include <vector>
  vector();
  vector( const vector& c );
  vector( size_type num, const TYPE& val = TYPE() );
  vector( input_iterator start, input_iterator end );
  ~vector();

The default vector constructor takes no arguments, creates a new instance of that vector.

The second constructor is a default copy constructor that can be used to create a new vector that is a copy of the given vector c.

The third constructor creates a vector with space for num objects. If val is specified, each of those objects will be given that value. For example, the following code creates a vector consisting of five copies of the integer 42:

 vector<int> v1( 5, 42 );         

The last constructor creates a vector that is initialized to contain the elements between start and end. For example:

 // create a vector of random integers
 cout << "original vector: ";
 vector<int> v;
 for( int i = 0; i < 10; i++ ) {
   int num = (int) rand() % 10;
   cout << num << " ";
   v.push_back( num );
 }
 cout << endl;            

 // find the first element of v that is even
 vector<int>::iterator iter1 = v.begin();
 while( iter1 != v.end() && *iter1 % 2 != 0 ) {
   iter1++;
 }              

 // find the last element of v that is even
 vector<int>::iterator iter2 = v.end();
 do {
   iter2--;
 } while( iter2 != v.begin() && *iter2 % 2 != 0 );              

 cout << "first even number: " << *iter1 << ", last even number: " << *iter2 << endl;         

 cout << "new vector: ";
 vector<int> v2( iter1, iter2 );
 for( int i = 0; i < v2.size(); i++ ) {
   cout << v2[i] << " ";
 }
 cout << endl;            

When run, this code displays the following output:

 original vector: 1 9 7 9 2 7 2 1 9 8
 first even number: 2, last even number: 8
 new vector: 2 7 2 1 9          

All of these constructors run in linear time except the first, which runs in constant time.

The default destructor is called when the vector should be destroyed.


pop_back
Syntax:
  #include <vector>
  void pop_back();

The pop_back() function removes the last element of the vector.

pop_back() runs in constant time.


push_back
Syntax:
  #include <vector>
  void push_back( const TYPE& val );

The push_back() function appends val to the end of the vector.

For example, the following code puts 10 integers into a list:

   list<int> the_list;
   for( int i = 0; i < 10; i++ )
     the_list.push_back( i );           

When displayed, the resulting list would look like this:

 0 1 2 3 4 5 6 7 8 9            

push_back() runs in constant time.


rbegin
Syntax:
  #include <vector>
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;

The rbegin() function returns a reverse_iterator to the end of the current vector.

rbegin() runs in constant time.


rend
Syntax:
  #include <vector>
  reverse_iterator rend();
  const_reverse_iterator rend() const;

The function rend() returns a reverse_iterator to the beginning of the current vector.

rend() runs in constant time.


reserve
Syntax:
  #include <vector>
  void reserve( size_type size );

The reserve() function sets the capacity of the vector to at least size.

reserve() runs in linear time.


resize
Syntax:
  #include <vector>
  void resize( size_type num, const TYPE& val = TYPE() );

The function resize() changes the size of the vector to size. If val is specified then any newly-created elements will be initialized to have a value of val.

This function runs in linear time.


size
Syntax:
  #include <vector>
  size_type size() const;

The size() function returns the number of elements in the current vector.


swap
Syntax:
  #include <vector>
  void swap( const container& from );

The swap() function exchanges the elements of the current vector with those of from. This function operates in constant time.

For example, the following code uses the swap() function to exchange the values of two strings:

   string first( "This comes first" );
   string second( "And this is second" );
   first.swap( second );
   cout << first << endl;
   cout << second << endl;          

The above code displays:

   And this is second
   This comes first             

Vector operators
Syntax:
  #include <vector>
  TYPE& operator[]( size_type index );
  const TYPE& operator[]( size_type index ) const;
  vector operator=(const vector& c2);
  bool operator==(const vector& c1, const vector& c2);
  bool operator!=(const vector& c1, const vector& c2);
  bool operator<(const vector& c1, const vector& c2);
  bool operator>(const vector& c1, const vector& c2);
  bool operator<=(const vector& c1, const vector& c2);
  bool operator>=(const vector& c1, const vector& c2);

All of the C++ containers can be compared and assigned with the standard comparison operators: ==, !=, <=, >=, <, >, and =. Individual elements of a vector can be examined with the [] operator.

Performing a comparison or assigning one vector to another takes linear time. The [] operator runs in constant time.

Two vectors are equal if:

  1. Their size is the same, and
  2. Each member in location i in one vector is equal to the the member in location i in the other vector.

Comparisons among vectors are done lexicographically.

For example, the following code uses the [] operator to access all of the elements of a vector:

 vector<int> v( 5, 1 );
 for( int i = 0; i < v.size(); i++ ) {
   cout << "Element " << i << " is " << v[i] << endl;
 }              

posted on 2006-08-13 19:52 keyws 閱讀(687) 評論(0)  編輯 收藏 引用 所屬分類: STL

只有注冊用戶登錄后才能發表評論。
網站導航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美国产日韩一区二区| 99精品免费| 欧美制服丝袜| 亚洲国产裸拍裸体视频在线观看乱了| 欧美一区1区三区3区公司| 亚洲资源av| 久久激情久久| 免费国产自线拍一欧美视频| 老司机久久99久久精品播放免费| 免费视频亚洲| 欧美亚州一区二区三区| 国产欧美二区| 黑人巨大精品欧美黑白配亚洲| 在线日本高清免费不卡| 中文欧美日韩| 免费观看日韩| 午夜精品久久久久久久99水蜜桃| 欧美怡红院视频| 亚洲第一天堂av| 洋洋av久久久久久久一区| 亚洲一区国产精品| 免费亚洲电影| 国产亚洲欧美在线| 99re热精品| 久久午夜精品| 欧美四级在线| 国产精品美女999| 在线看视频不卡| 久久www免费人成看片高清| 亚洲日本成人网| 美国三级日本三级久久99| 欧美日韩亚洲一区二区三区在线观看 | 性欧美超级视频| 欧美成va人片在线观看| 久久爱www久久做| 欧美大胆人体视频| 国产一本一道久久香蕉| 99视频一区| 久久综合九九| 亚洲一区二区三区高清| 欧美激情乱人伦| 黄色国产精品| 久久精品国产91精品亚洲| 午夜精品在线视频| 免费亚洲一区二区| 精品96久久久久久中文字幕无| 欧美专区日韩专区| 午夜精品久久久久影视| 国产精品s色| 亚洲三级影院| 久久久亚洲高清| 亚洲欧美另类在线| 国产精品毛片一区二区三区| 日韩视频欧美视频| 亚洲国产精品尤物yw在线观看| 久久亚洲高清| 亚洲激情第一页| 亚洲国产成人av| 亚洲乱码国产乱码精品精98午夜| 狼狼综合久久久久综合网| 国内久久精品| 久久精品一区二区三区四区| 午夜国产精品视频| 国产精品日韩久久久| 久久成人精品电影| 欧美二区在线看| 99国产精品久久| 一区二区三区精品视频在线观看| 亚洲伊人久久综合| 在线观看亚洲| 欧美大片免费观看在线观看网站推荐 | 亚洲视屏一区| 亚洲五月六月| 国产精品欧美日韩久久| 欧美中文字幕视频| 欧美综合二区| 亚洲国产欧美国产综合一区| 欧美激情五月| 欧美私人啪啪vps| 中文在线不卡视频| 亚洲一区二区三区中文字幕| 国产又爽又黄的激情精品视频 | 久久精品国产2020观看福利| 久久成人人人人精品欧| 亚洲第一在线综合网站| 亚洲激情影视| 欧美三日本三级少妇三2023| 亚洲影视在线| 久久免费视频这里只有精品| 亚洲国产精品va在线看黑人动漫| 一区精品久久| 一本色道久久综合狠狠躁的推荐| 亚洲精品国产视频| 国产精品v欧美精品∨日韩| 欧美一区二区三区视频免费播放| 久久美女性网| 一区二区三区免费网站| 亚洲欧美日韩精品久久奇米色影视| 在线观看日韩av| 亚洲最新视频在线播放| 一区视频在线播放| 日韩视频在线一区| 麻豆国产精品va在线观看不卡| 99精品欧美一区| 久久精品国产一区二区三| 在线亚洲激情| 久久美女性网| 午夜欧美精品久久久久久久| 欧美激情女人20p| 久久精品女人天堂| 欧美天天视频| 欧美顶级大胆免费视频| 国产精品久久久久一区二区| 另类激情亚洲| 国产日韩欧美一区二区三区四区| 欧美激情第一页xxx| 欧美日韩国产丝袜另类| 性久久久久久久久久久久| 欧美精品在线观看一区二区| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美日韩国产成人在线观看| 欧美高清hd18日本| 亚洲成人影音| 久久精品国产99国产精品澳门 | 国产区精品在线观看| 99re66热这里只有精品3直播| 国产日韩欧美亚洲| 一区二区三区四区五区视频| 亚洲国产老妈| 久久在线视频在线| 久久久久久久波多野高潮日日| 欧美三级午夜理伦三级中文幕| 亚洲国产日韩欧美在线动漫| 最近中文字幕日韩精品| 免费永久网站黄欧美| 久久精品一区二区| 欧美激情中文字幕乱码免费| 久久中文字幕一区二区三区| 国产精品性做久久久久久| 国产一区二区三区免费在线观看 | 亚洲裸体俱乐部裸体舞表演av| 在线 亚洲欧美在线综合一区| 亚洲午夜小视频| 一本色道久久综合狠狠躁篇的优点| 欧美风情在线观看| 欧美高清视频www夜色资源网| 在线看片第一页欧美| 免费一级欧美片在线观看| 欧美国产视频在线| 一区二区三区精品视频| 狠狠色综合日日| 欧美一区在线看| 久久综合九色综合欧美狠狠| 欧美视频福利| 亚洲男人的天堂在线观看| 99精品免费网| 国产欧美日韩一区| 久久免费99精品久久久久久| 欧美激情一区二区三区高清视频| 夜夜爽99久久国产综合精品女不卡| 欧美日韩一区二区三区| 欧美一二三区在线观看| 欧美激情一区二区久久久| 亚洲日本电影| 欧美午夜精品久久久久久人妖| 欧美黄污视频| 亚洲一区欧美二区| 一区二区在线视频播放| 免费中文字幕日韩欧美| 亚洲视频福利| 久久一区二区三区国产精品| 国产一区二区三区在线观看精品| 久久国产精品色婷婷| 久热精品视频在线| 亚洲视频一区在线观看| 国产综合久久久久久鬼色| 欧美成ee人免费视频| 亚洲一区精品电影| 亚洲日本成人网| 久久精品99国产精品| 99热免费精品| 另类欧美日韩国产在线| 一区二区国产在线观看| 久久综合色8888| 亚洲伊人色欲综合网| 亚洲欧洲在线一区| 很黄很黄激情成人| 国产精品久久久久久av福利软件| 六月婷婷一区| 午夜视频久久久久久| 日韩午夜中文字幕| 欧美激情精品久久久| 久久精品国产久精国产一老狼| 亚洲午夜一级| 亚洲欧洲综合另类| 一区二区亚洲欧洲国产日韩| 国产亚洲一区二区精品| 国产欧美日韩精品丝袜高跟鞋| 欧美国产精品一区| 久久久久久久97|