青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

concentrate on c/c++ related technology

plan,refactor,daily-build, self-discipline,

  C++博客 :: 首頁 :: 聯(lián)系 :: 聚合  :: 管理
  37 Posts :: 1 Stories :: 12 Comments :: 0 Trackbacks

常用鏈接

留言簿(9)

我參與的團隊

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

only one vertex shader can be active at one time.
every vertex shader- driven program must run the following steps:
1) check for vertex shader support by checking the D3DCAPS8:VertexShaderVersion field.
D3DVS_VERSION(X,Y) shader x.y.
if(pCaps->VertexShaderVersion < D3DVS_VERSION(1,1))
{
return E_FAIL;
}
here to judge whether the vertex shader is suited for shader1.1.
the vertex shader version is in the D3DCAPS8 structure.
2) declaration of the vertex shader with D3DVSD_* macros, to map vertex buffers streams to input registers.
you must declare a vertex shader before using it,
SetStreamSource: bind a vertex buffer to a device data stream. D3DVSD_STREAM.
D3DVSD_REG:bind a single vertex register to a vertex element/property from vertex stream.
3) setting the vertex constant register with SetVertexShaderConstant.
you fill the vertex shader constant registers with SetVertexShaderConstant, and  get the vertex shader constant registers with GetVertexShaderConstant.
D3DVSD_CONSTANT: used in vertex shader declaration, and it can only be used once.
SetVertexShaderConstant: it can be used in every DrawPrimitive* calls.
4) compile previously written vertex shader with D3DXAssembleShader*.
different instructions include:
add  dest src1 src2  add src1 and src2 together.
dp3  dest src1 src2 dest.x = dest.y = dest.z = dest.w = (src1.x * src2.x ) + (src1.y * src2.y) + (src1.z* src2.z)
dp4  dest src1 src2 dest.w =  (src1.x * src2.x ) + (src1.y * src2.y) + (src1.z* src2.z) +(src1.w* src2.w) and dest.x dest.y, dest.z is not used.
dst dest src1 src2  dest.x = 1; dest.y = src1.y * src2.y;dest.z = src1.z;dest.w = src2.w; it is useful to calculate standard attentuation.
expp dest, src.w float tmp = (float)pow(2, w); WORD tmpd = *(DWORD*)&tmp & 0xffffff00; dest.z = *(float*)&tmpd;
lit dest, src

Calculates lighting coefficients from two dot products and a power.
---------------------------------------------
To calculate the lighting coefficients, set up the registers as shown:

src.x = N*L ; The dot product between normal and direction to light
src.y = N*H ; The dot product between normal and half vector
src.z = ignored ; This value is ignored
src.w = specular power ; The value must be between ?28.0 and 128.0
logp dest src.w 
 float tmp = (float)(log(v)/log(2)); 
 DWORD tmpd = *(DWORD*)&tmp & 0xffffff00; 
 dest.z = *(float*)&tmpd;
mad dest src1 src2 src3 dest = (src1 * src2) + src3
max dest src1 src2 dest = (src1 >= src2)?src1:src2
min dest src1 src2 dest = (src1 < src2)?src1:src2
mov dest, src move
mul dest, src1, src2  set dest to the component by component product of src1 and src2
nop nothing
rcp dest, src.w
if(src.w == 1.0f)
{
  dest.x = dest.y = dest.z = dest.w = 1.0f;
}
else if(src.w == 0)
{
  dest.x = dest.y = dest.z = dest.w = PLUS_INFINITY();
}
else
{
  dest.x = dest.y = dest.z = m_dest.w = 1.0f/src.w;
}
rsq dest, src

reciprocal square root of src
(much more useful than straight 'square root'):

float v = ABSF(src.w);
if(v == 1.0f)
{
  dest.x = dest.y = dest.z = dest.w = 1.0f;
}
else if(v == 0)
{
  dest.x = dest.y = dest.z = dest.w = PLUS_INFINITY();
}
else
{
  v = (float)(1.0f / sqrt(v));
  dest.x = dest.y = dest.z = dest.w = v;
}
sge dest, src1, src2 dest = (src1 >=src2) ? 1 : 0
slt dest, src1, src2 dest = (src1 <src2) ? 1 : 0

The Vertex Shader ALU is a multi-threaded vector processor that operates on quad-float data. It consists of two functional units. The SIMD Vector Unit is responsible for the mov, mul, add, mad, dp3, dp4, dst, min, max, slt and sge instructions. The Special Function Unit is responsible for the rcp, rsq, log, exp and lit instructions.

rsq is used in normalizing vectors to be used in lighting equations.
The exponential instruction expp can be used for fog effects, procedural noise generation.
A log function can be the inverse of a exponential function, means it undoes the operation of the exponential function.

The lit instruction deals by default with directional lights. It calculates the diffuse & specular factors with clamping based on N * L and N * H and the specular power. There is no attenuation involved, but you can use an attenuation level separately with the result of lit by using the dst instruction. This is useful for constructing attenuation factors for point and spot lights.

The min and max instructions allow for clamping and absolute value computation.
Using the Input Registers

The 16 input registers can be accessed by using their names v0 to v15. Typical values provided to the input vertex registers are:

  • Position(x,y,z,w)
  • Diffuse color (r,g,b,a) -> 0.0 to +1.0
  • Specular color (r,g,b,a) -> 0.0 to +1.0
  • Up to 8 Texture coordinates (each as s, t, r, q or u, v , w, q) but normally 4 or 6, dependent on hardware support
  • Fog (f,*,*,*) -> value used in fog equation
  • Point size (p,*,*,*)

The input registers are read-only. Each instruction may access only one vertex input register. unspecified components of the input registers default to 0.0 for the .x, .y, .z and 1.0 for the components w.

all data in an input register remains persistent throughout the vertex shader execution and even longer. that means they retain their data longer than the life-time of a vertex shader, so it is possible to re-use the data of the input registers in the next vertex shader.

Using the Constant Registers

Typical uses for the constant registers include:

  • Matrix data: quad-floats are typically one row of a 4x4 matrix
  • Light characteristics, (position, attenuation etc)
  • Current time
  • Vertex interpolation data
  • Procedural data

the constant registers are read-only from the perspective of the vertex shader, whereas the application can read and write into the constant registers.they can be reused just as input registers.
this allows an application to avoid making redundant SetVertexShaderConstant() calls.
Using the Address Register
you access the address registers with a0 to an(more than one address register should be available in vertex shader versions higher than 1.1)
Using the Temporary Registers
you can access 12 temporary registers using r0 to r11.
each temporary register has single write and triple read access. therefore an instruction could have the same temporary register as a source three times, vertex shaders can not read a value from a temporary register before writing to it. if you try to read a temporary register that was not filled with a value, the API will give you an error messge while creating the vertex shader(CreateVertexShader)
Using the Output Registers
there are up to 13 write-only output registers that can be accessed using the following register names. they are defined as the inputs to the rasterizer and the name of each registers is preceded by a lower case 'o'. the output registers are named to suggest their use by pixel shaders.
every vertex shader must write at least to one component of oPos, or you will get an error message by the assembler.
swizzling and masking
if you use the input, constant and temporary registers as source registers, you can swizzle the .x, .y, .z and .w values independently of each other.
if you use the output and temporary registers as destination registers you can use the .x, .y, .z and .w values as write-masks.
component modifier description
R.[x].[y].[z].[w]     Destination mask
R.xwzy                  source swizzle
- R                        source negation 
Guidelines for writing the vertex shaders
the most important restrictions you should remember when writing vertex shaders are the following:
they must write to at least one component of the output register oPos.
there is a 128 instruction limit
every instruction may souce no more than one constant register,e.g, add r0, c4,c3 will fail.
every instruction may souce no more than one input register, e.g. add r0,v1,v2 will fail.
there are no c-like conditional statements, but you can mimic an instruction of the form r0 = (r1 >= r2) ? r3 : r4 with the sge instruction.
all iterated values transferred out of the vertex shader are clamped to [0..1]
several ways to optimize vertex shaders:
when setting vertex shader constant data, try to set all data in one SetVertexShaderConstant call.
pause and think about using a mov instruction, you may be able to avoid it.
choose instructions that perform multiple operations over instructions that perform single operations.
collapse(remove complex instructions like m4x4 or m3x3 instructions)vertex shaders before thinking about optimizations.
a rule of thumb for load-balancing between the cpu/gpu: many calculations in shaders can be pulled outside and reformulated per-object instead of per-vertex and put into constant    registers. if you are doing some calculation which is per object rather than per vertex, then do it on the cpu and upload it on the vertex shader as a constant, rather than doing it on the GPU.
one of the most interesting methods to optimize methods to optimize your applications bandwidth usage, is the usage of the compressed vertex data.
Compiling a Vertex Shader
Direct3D uses byte-codes, whereas OpenGL implementations parses a string. therefore the Direct3D developer needs to assemble the vertex shader source with an assembler.this might help you find bugs earlier in your development cycle and it also reduces load-time.
three different ways to compile a vertex shader:
write the vertex shader source into a separate ASCII file for example test.vsh and compile it with vertex shader assembler into a binary file, for example test.vso. this file will be opened and read at game start up. this way, not every person will be able to read and modify your vertex shader source.
write the vertex shader source into a separate ASCII file or as a char string into you *.cpp file and compile it "on the fly" while the application starts up with the D3DXAssembleShader*() functions.
write the vertex shader source in an effects file and open this effect file when the application starts up.the vertex shader can be compiled by reading the effect files with D3DXCreateEffectFromFile. it is also possible to pre-compile an effects file. this way, most of the handling of vertex shaders is simplified and handled by the effect file functions.
 
5) Creating a vertex shader handle with CreateVertexShader.
the CreateVertexShader function is used to create and validate a vertex shader.
6) setting a vertex shader with SetVertexShader for a specific object.
you set a vertex shader for a specific object by using SetVertexShader before the DrawPrimitive() call of this object.
vertex shaders are executed with SetVertexShader as many times as there are vertices,.
7) delete a vertex shader with DeleteVertexShader().
when the game shuts down or when the device is changed, the resources taken by the vertex shader must be released. this must be done by calling DeleteVertexShader with the vertex shader handle.

Point light source.
a point light source has color and position within a scene, but no single direction. all light rays originate from one point and illuminate equally in all directions. the intensity of the rays will remain constant regardless of their distance from the point source unless a falloff value is explicitly stated. a point light is useful to simulate light bulb.

to get a wider range of effects a decent attenuation equation is used:
funcAttenuation = 1/A0 + A1 * dL + A2 * dL * dL

posted on 2008-12-09 11:18 jolley 閱讀(544) 評論(0)  編輯 收藏 引用
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            美国十次成人| 欧美一级片久久久久久久| 国产日韩欧美a| 亚洲最黄网站| 免费成人黄色av| 久久久久久亚洲精品中文字幕| 亚洲一区二区三区激情| 在线性视频日韩欧美| 99精品久久| 在线视频欧美一区| 亚洲欧美电影在线观看| 欧美一区2区三区4区公司二百| 亚洲人体影院| 亚洲人成在线影院| 亚洲网站啪啪| 久久久成人网| 老鸭窝毛片一区二区三区| 欧美激情视频在线免费观看 欧美视频免费一 | 久久青草福利网站| 久久免费99精品久久久久久| 久久亚洲精品一区| 久久青草久久| 国产精品久久久99| 一本久久青青| 亚洲与欧洲av电影| 久久尤物视频| 欧美色综合天天久久综合精品| 国产精品视频最多的网站| 国产综合香蕉五月婷在线| 亚洲欧美激情四射在线日| 欧美亚韩一区| 激情偷拍久久| 亚洲欧美大片| 亚洲精品一区二区三区不| 欧美夜福利tv在线| 欧美日韩一区二区视频在线 | 在线看国产一区| 亚洲欧洲精品一区| 先锋影音久久久| 蜜臀99久久精品久久久久久软件| 亚洲电影在线| 久久另类ts人妖一区二区| 欧美岛国在线观看| 亚洲一区免费视频| 欧美激情一二三区| 国产综合色产在线精品| 夜夜嗨av一区二区三区| 久久久久久久久久久久久9999| 99精品国产在热久久| 一区二区三区国产精品| 欧美在线你懂的| 欧美日韩日韩| 亚洲精品中文在线| 免费在线观看精品| 久久久999精品| 欧美人在线观看| 激情视频一区二区| 久久久久久91香蕉国产| 中文国产成人精品| 国产精品国产亚洲精品看不卡15| 伊人久久亚洲美女图片| 亚洲欧美制服另类日韩| 欧美日产国产成人免费图片| 欧美国产综合| 午夜欧美不卡精品aaaaa| 欧美午夜一区二区福利视频| 一区二区三区视频观看| 欧美中文字幕久久| 亚洲欧美日韩在线| 国产精品一区在线观看你懂的| 中文精品视频一区二区在线观看| 亚洲国产高清自拍| 欧美一区二区三区免费大片| 国产一区二区三区黄视频| 久久国产精品色婷婷| 午夜精品一区二区三区电影天堂| 国产精品久久久久久久久久尿 | 国产综合av| 国内揄拍国内精品久久| 欧美中文在线观看国产| 一区二区毛片| 国产精品综合| 久久久久久久网| 久久免费视频网站| 亚洲精品日韩激情在线电影| 亚洲人成啪啪网站| 欧美日韩亚洲激情| 亚洲欧美精品一区| 久久都是精品| 亚洲美女网站| 亚洲欧美欧美一区二区三区| 狠狠色综合日日| 欧美黄免费看| 午夜日韩福利| 一区二区三区四区蜜桃| 亚洲字幕在线观看| 国产视频在线观看一区二区| 欧美成人午夜激情在线| 欧美午夜精品理论片a级按摩| 久久精品亚洲精品| 欧美—级a级欧美特级ar全黄| 午夜精品短视频| 欧美插天视频在线播放| 午夜欧美精品| 欧美国产视频一区二区| 欧美在线地址| 欧美日本在线看| 欧美在线播放高清精品| 欧美va日韩va| 久久精品免费观看| 欧美激情在线免费观看| 久久久91精品国产| 欧美日韩视频在线| 久久久久久91香蕉国产| 欧美区二区三区| 免费观看成人| 国产日本欧洲亚洲| 亚洲精品一区二区在线| 国产亚洲成av人片在线观看桃| 亚洲伦理精品| 亚洲国产精品一区制服丝袜| 香蕉乱码成人久久天堂爱免费| 亚洲理伦电影| 久久婷婷国产麻豆91天堂| 亚洲自拍都市欧美小说| 欧美精品三级日韩久久| 麻豆精品精品国产自在97香蕉| 99精品热视频| 久久精品国产第一区二区三区| 欧美阿v一级看视频| 久久av一区二区| 国产精品久久久久久户外露出| 欧美大片免费观看| 一区二区三区自拍| 欧美一区亚洲| 久久国产婷婷国产香蕉| 国产精品资源| 亚洲图片激情小说| 夜夜嗨av一区二区三区| 欧美激情一级片一区二区| 欧美福利一区二区| 精品成人一区| 亚洲一区二区三区欧美 | 久久精品视频免费观看| 亚洲欧美日韩国产综合在线 | 亚洲美女电影在线| 亚洲免费av观看| 欧美激情二区三区| 亚洲精品在线免费观看视频| 夜夜嗨av一区二区三区网站四季av| 欧美国产在线观看| 欧美激情一区二区三区在线| 亚洲美女啪啪| 欧美日韩精品系列| 夜夜爽夜夜爽精品视频| 亚洲欧美精品suv| 欧美性淫爽ww久久久久无| 亚洲午夜久久久久久尤物| 先锋资源久久| 久久久国产精品一区| 久久久一二三| 亚洲欧洲一区二区三区久久| 欧美日韩伦理在线免费| 亚洲精品一区久久久久久| 亚洲欧美在线视频观看| 国产精品成人一区二区三区吃奶| 亚洲永久精品大片| 久久亚洲高清| 国产亚洲一区二区三区| 老司机精品视频网站| 亚洲人成毛片在线播放女女| 亚洲女性裸体视频| 激情自拍一区| 欧美猛交免费看| 午夜国产不卡在线观看视频| 鲁鲁狠狠狠7777一区二区| 亚洲麻豆视频| 国产精品一区视频网站| 老司机精品导航| 亚洲视频高清| 欧美国产精品一区| 亚洲欧美中文日韩在线| 在线观看欧美日韩| 国产精品久久久久久久一区探花 | 欧美国产一区二区| 亚洲最新在线视频| 久久夜色精品国产噜噜av| 99国产精品99久久久久久| 国产在线精品成人一区二区三区| 免费在线一区二区| 亚洲欧美国内爽妇网| 亚洲国产专区| 久久午夜精品一区二区| 亚洲一区网站| 亚洲二区在线视频| 久久伊人精品天天| 亚洲一二三区在线| 日韩亚洲欧美精品| 欧美国产专区| 欧美1级日本1级|