• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj2585

            Window Pains

            Time Limit: 1000MS Memory Limit: 65536K
            Total Submissions: 1090 Accepted: 540

            Description

            Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:
            1 1 . .
            1 1 . .
            . . . .
            . . . .
            . 2 2 .
            . 2 2 .
            . . . .
            . . . .
            . . 3 3
            . . 3 3
            . . . .
            . . . .
            . . . .
            4 4 . .
            4 4 . .
            . . . .
            . . . .
            . 5 5 .
            . 5 5 .
            . . . .
            . . . .
            . . 6 6
            . . 6 6
            . . . .
            . . . .
            . . . .
            7 7 . .
            7 7 . .
            . . . .
            . . . .
            . 8 8 .
            . 8 8 .
            . . . .
            . . . .
            . . 9 9
            . . 9 9
            When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:
            1 2 2 ?
            1 2 2 ?
            ? ? ? ?
            ? ? ? ?
            If window 4 were then brought to the foreground:
            1 2 2 ?
            4 4 2 ?
            4 4 ? ?
            ? ? ? ?
            . . . and so on . . .
            Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

            Input

            Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

            A single data set has 3 components:
            1. Start line - A single line:
              START

            2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
            3. End line - A single line:
              END

            After the last data set, there will be a single line:
            ENDOFINPUT

            Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

            Output

            For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

            THESE WINDOWS ARE CLEAN

            Otherwise, the output will be a single line with the statement:
            THESE WINDOWS ARE BROKEN

            Sample Input

            START
            1 2 3 3
            4 5 6 6
            7 8 9 9
            7 8 9 9
            END
            START
            1 1 3 3
            4 1 3 3
            7 7 9 9
            7 7 9 9
            END
            ENDOFINPUT
            
            

            Sample Output

            THESE WINDOWS ARE CLEAN
            THESE WINDOWS ARE BROKEN
            
            圖論的好題
            把模型建為網(wǎng)絡(luò),然后判斷是否為AOV網(wǎng)
            如何構(gòu)圖
            預(yù)處理要先計算出4*4格的位置可能填放的窗口
            讀取快照后,對每一點處理如下
            該點當前的窗口為k,對該點可能出現(xiàn)窗口i,標記g[k][i]有邊
            正常的話,不會出現(xiàn)環(huán)
            這里判斷AOV網(wǎng)用點的入度計算
            如果存在超過未刪除的點的入度全部大于0,說明存在環(huán)
            #include<algorithm>
            #include
            <iostream>
            #include
            <cstring>
            #include
            <string>
            #include
            <cstdio>
            using namespace std;
            string cover[4][4];
            bool exist[10];//第i個窗口是否在快照中出現(xiàn)
            int id[10];//入度
            bool g[10][10];
            int t;//頂點數(shù)
            int n=4;
            int a[4][4];
            void getweizhi()
            {
                
            int i,j,k;
                
            for(i=0;i<n;i++)
                
            {
                    
            for(j=0;j<n;j++)
                        cover[i][j].erase();
                }

                
            for(k=1;k<=9;k++)
                
            {
                    i
            =(k-1)/3;
                    j
            =(k-1)%3;
                    cover[i][j]
            +=char(k+'0');
                    cover[i][j
            +1]+=char(k+'0');
                    cover[i
            +1][j]+=char(k+'0');
                    cover[i
            +1][j+1]+=char(k+'0');
                }

            }

            void init()
            {
                
            int i,j,k;
                memset(g,
            0,sizeof(g));
                memset(exist,
            false,sizeof(exist));
                memset(id,
            0,sizeof(id));
                t
            =0;
                
            for(i=0;i<4;i++)
                
            {
                    
            for(j=0;j<4;j++)
                    
            {
                        cin
            >>k;
                        a[i][j]
            =k;
                        
            if (!exist[k])
                        
            {
                            t
            ++;
                            exist[k]
            =true;
                        }

                    }

                }

            }

            void build()
            {
                
            int i,j,p;
                
            for(i=0;i<n;i++)
                
            for(j=0;j<n;j++)
                
            {
                    
            for(p=0;p<=cover[i][j].length()-1;p++)
                        
            if (cover[i][j][p]-'0'!=a[i][j]&&!(g[a[i][j]][cover[i][j][p]-'0']))
                        
            {
                            g[a[i][j]][cover[i][j][p]
            -'0']=true;
                            id[cover[i][j][p]
            -'0']++;
                        }

                }

            }

            bool check()
            {
                
            int i,j,k;
                
            for(k=0;k<t;k++)
                
            {
                    i
            =1;
                    
            while(!exist[i]||(i<=9&&id[i]>0)) i++;
                    
            if (i>9)//剩余的點中每個點入度都超過0
                    {
                        
            return false;
                    }

                    exist[i]
            =false;
                    
            for(j=1;j<=9;j++)
                        
            if (exist[j]&&g[i][j]) id[j]--;
                }

                
            return true;
            }

            int main()
            {
                
            string tmp;
                getweizhi();
                
            while(cin>>tmp)
                
            {
                    
            if (tmp=="ENDOFINPUT")
                    
            {
                        
            break;
                    }

                    init();
                    build();
                    
            if (check())
                        cout
            <<"THESE WINDOWS ARE CLEAN"<<endl;
                    
            else
                        cout
            <<"THESE WINDOWS ARE BROKEN"<<endl;
                    cin
            >>tmp;
                }

                
            return 0;
            }

            posted on 2012-04-02 22:56 jh818012 閱讀(142) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標題查看
            • --王私江
            AAA级久久久精品无码片| 久久中文字幕一区二区| 久久国语露脸国产精品电影| 69SEX久久精品国产麻豆| 久久免费99精品国产自在现线 | 国内精品久久久久久久久电影网| 香蕉久久永久视频| 国产一级做a爰片久久毛片| 亚洲v国产v天堂a无码久久| 狠狠色婷婷综合天天久久丁香| 亚洲国产综合久久天堂| 99久久精品国产高清一区二区| 无码人妻久久一区二区三区蜜桃| 亚洲国产成人久久综合一| 久久久久久久精品妇女99| 久久久久无码精品| 久久99亚洲综合精品首页| 久久精品国产免费| 2021久久国自产拍精品| 久久久久亚洲AV无码网站| 午夜天堂精品久久久久| 欧美久久亚洲精品| 久久影院午夜理论片无码| 久久精品成人| 精品久久久久一区二区三区 | 久久精品亚洲一区二区三区浴池 | 亚洲成色999久久网站| 99久久人妻无码精品系列 | 国产精品99久久久久久人| 无码人妻久久一区二区三区免费丨 | 精品蜜臀久久久久99网站| 色婷婷综合久久久中文字幕| 久久久久久精品免费免费自慰 | 久久亚洲欧美日本精品| 久久夜色精品国产亚洲| 91精品国产91热久久久久福利 | 欧美亚洲另类久久综合| 香蕉久久夜色精品国产小说| 国产成人香蕉久久久久| 久久久久香蕉视频| 久久精品国产2020|