• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj2585

            Window Pains

            Time Limit: 1000MS Memory Limit: 65536K
            Total Submissions: 1090 Accepted: 540

            Description

            Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:
            1 1 . .
            1 1 . .
            . . . .
            . . . .
            . 2 2 .
            . 2 2 .
            . . . .
            . . . .
            . . 3 3
            . . 3 3
            . . . .
            . . . .
            . . . .
            4 4 . .
            4 4 . .
            . . . .
            . . . .
            . 5 5 .
            . 5 5 .
            . . . .
            . . . .
            . . 6 6
            . . 6 6
            . . . .
            . . . .
            . . . .
            7 7 . .
            7 7 . .
            . . . .
            . . . .
            . 8 8 .
            . 8 8 .
            . . . .
            . . . .
            . . 9 9
            . . 9 9
            When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:
            1 2 2 ?
            1 2 2 ?
            ? ? ? ?
            ? ? ? ?
            If window 4 were then brought to the foreground:
            1 2 2 ?
            4 4 2 ?
            4 4 ? ?
            ? ? ? ?
            . . . and so on . . .
            Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

            Input

            Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

            A single data set has 3 components:
            1. Start line - A single line:
              START

            2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
            3. End line - A single line:
              END

            After the last data set, there will be a single line:
            ENDOFINPUT

            Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

            Output

            For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

            THESE WINDOWS ARE CLEAN

            Otherwise, the output will be a single line with the statement:
            THESE WINDOWS ARE BROKEN

            Sample Input

            START
            1 2 3 3
            4 5 6 6
            7 8 9 9
            7 8 9 9
            END
            START
            1 1 3 3
            4 1 3 3
            7 7 9 9
            7 7 9 9
            END
            ENDOFINPUT
            
            

            Sample Output

            THESE WINDOWS ARE CLEAN
            THESE WINDOWS ARE BROKEN
            
            圖論的好題
            把模型建為網(wǎng)絡(luò),然后判斷是否為AOV網(wǎng)
            如何構(gòu)圖
            預(yù)處理要先計算出4*4格的位置可能填放的窗口
            讀取快照后,對每一點處理如下
            該點當前的窗口為k,對該點可能出現(xiàn)窗口i,標記g[k][i]有邊
            正常的話,不會出現(xiàn)環(huán)
            這里判斷AOV網(wǎng)用點的入度計算
            如果存在超過未刪除的點的入度全部大于0,說明存在環(huán)
            #include<algorithm>
            #include
            <iostream>
            #include
            <cstring>
            #include
            <string>
            #include
            <cstdio>
            using namespace std;
            string cover[4][4];
            bool exist[10];//第i個窗口是否在快照中出現(xiàn)
            int id[10];//入度
            bool g[10][10];
            int t;//頂點數(shù)
            int n=4;
            int a[4][4];
            void getweizhi()
            {
                
            int i,j,k;
                
            for(i=0;i<n;i++)
                
            {
                    
            for(j=0;j<n;j++)
                        cover[i][j].erase();
                }

                
            for(k=1;k<=9;k++)
                
            {
                    i
            =(k-1)/3;
                    j
            =(k-1)%3;
                    cover[i][j]
            +=char(k+'0');
                    cover[i][j
            +1]+=char(k+'0');
                    cover[i
            +1][j]+=char(k+'0');
                    cover[i
            +1][j+1]+=char(k+'0');
                }

            }

            void init()
            {
                
            int i,j,k;
                memset(g,
            0,sizeof(g));
                memset(exist,
            false,sizeof(exist));
                memset(id,
            0,sizeof(id));
                t
            =0;
                
            for(i=0;i<4;i++)
                
            {
                    
            for(j=0;j<4;j++)
                    
            {
                        cin
            >>k;
                        a[i][j]
            =k;
                        
            if (!exist[k])
                        
            {
                            t
            ++;
                            exist[k]
            =true;
                        }

                    }

                }

            }

            void build()
            {
                
            int i,j,p;
                
            for(i=0;i<n;i++)
                
            for(j=0;j<n;j++)
                
            {
                    
            for(p=0;p<=cover[i][j].length()-1;p++)
                        
            if (cover[i][j][p]-'0'!=a[i][j]&&!(g[a[i][j]][cover[i][j][p]-'0']))
                        
            {
                            g[a[i][j]][cover[i][j][p]
            -'0']=true;
                            id[cover[i][j][p]
            -'0']++;
                        }

                }

            }

            bool check()
            {
                
            int i,j,k;
                
            for(k=0;k<t;k++)
                
            {
                    i
            =1;
                    
            while(!exist[i]||(i<=9&&id[i]>0)) i++;
                    
            if (i>9)//剩余的點中每個點入度都超過0
                    {
                        
            return false;
                    }

                    exist[i]
            =false;
                    
            for(j=1;j<=9;j++)
                        
            if (exist[j]&&g[i][j]) id[j]--;
                }

                
            return true;
            }

            int main()
            {
                
            string tmp;
                getweizhi();
                
            while(cin>>tmp)
                
            {
                    
            if (tmp=="ENDOFINPUT")
                    
            {
                        
            break;
                    }

                    init();
                    build();
                    
            if (check())
                        cout
            <<"THESE WINDOWS ARE CLEAN"<<endl;
                    
            else
                        cout
            <<"THESE WINDOWS ARE BROKEN"<<endl;
                    cin
            >>tmp;
                }

                
            return 0;
            }

            posted on 2012-04-02 22:56 jh818012 閱讀(142) 評論(0)  編輯 收藏 引用


            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點擊標題查看
            • --王私江
            亚洲精品无码久久久久| 精品国产福利久久久| 大香伊人久久精品一区二区| 日韩精品久久久久久久电影| 一本久久知道综合久久| 91精品国产综合久久婷婷| 99久久免费只有精品国产| 婷婷久久综合九色综合九七| 日本久久久久亚洲中字幕| 亚洲天堂久久精品| 国产成年无码久久久免费| 91久久精品无码一区二区毛片| 伊人久久大香线蕉精品不卡| 精品综合久久久久久97超人| 久久久久久久91精品免费观看| 久久99中文字幕久久| 伊人色综合久久天天人手人婷| 久久精品国产久精国产| 一本色道久久88—综合亚洲精品| 欧美综合天天夜夜久久| 亚洲va国产va天堂va久久| 久久精品国产第一区二区| 久久成人影院精品777| 午夜精品久久久久久中宇| 午夜精品久久久内射近拍高清| 色综合色天天久久婷婷基地| 午夜天堂精品久久久久| 久久亚洲AV无码精品色午夜| 国产亚洲美女精品久久久| 国产精品久久99| 国产精品久久久久无码av| 欧美牲交A欧牲交aⅴ久久| 77777亚洲午夜久久多喷| 久久久久亚洲精品日久生情| 久久久久无码中| 日韩美女18网站久久精品| 久久久受www免费人成| 欧美性猛交xxxx免费看久久久| 久久亚洲电影| 久久久无码精品亚洲日韩京东传媒| 久久综合亚洲色一区二区三区|