• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj2585

            Window Pains

            Time Limit: 1000MS Memory Limit: 65536K
            Total Submissions: 1090 Accepted: 540

            Description

            Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:
            1 1 . .
            1 1 . .
            . . . .
            . . . .
            . 2 2 .
            . 2 2 .
            . . . .
            . . . .
            . . 3 3
            . . 3 3
            . . . .
            . . . .
            . . . .
            4 4 . .
            4 4 . .
            . . . .
            . . . .
            . 5 5 .
            . 5 5 .
            . . . .
            . . . .
            . . 6 6
            . . 6 6
            . . . .
            . . . .
            . . . .
            7 7 . .
            7 7 . .
            . . . .
            . . . .
            . 8 8 .
            . 8 8 .
            . . . .
            . . . .
            . . 9 9
            . . 9 9
            When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:
            1 2 2 ?
            1 2 2 ?
            ? ? ? ?
            ? ? ? ?
            If window 4 were then brought to the foreground:
            1 2 2 ?
            4 4 2 ?
            4 4 ? ?
            ? ? ? ?
            . . . and so on . . .
            Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

            Input

            Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

            A single data set has 3 components:
            1. Start line - A single line:
              START

            2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
            3. End line - A single line:
              END

            After the last data set, there will be a single line:
            ENDOFINPUT

            Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

            Output

            For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

            THESE WINDOWS ARE CLEAN

            Otherwise, the output will be a single line with the statement:
            THESE WINDOWS ARE BROKEN

            Sample Input

            START
            1 2 3 3
            4 5 6 6
            7 8 9 9
            7 8 9 9
            END
            START
            1 1 3 3
            4 1 3 3
            7 7 9 9
            7 7 9 9
            END
            ENDOFINPUT
            
            

            Sample Output

            THESE WINDOWS ARE CLEAN
            THESE WINDOWS ARE BROKEN
            
            圖論的好題
            把模型建為網(wǎng)絡(luò),然后判斷是否為AOV網(wǎng)
            如何構(gòu)圖
            預(yù)處理要先計(jì)算出4*4格的位置可能填放的窗口
            讀取快照后,對每一點(diǎn)處理如下
            該點(diǎn)當(dāng)前的窗口為k,對該點(diǎn)可能出現(xiàn)窗口i,標(biāo)記g[k][i]有邊
            正常的話,不會(huì)出現(xiàn)環(huán)
            這里判斷AOV網(wǎng)用點(diǎn)的入度計(jì)算
            如果存在超過未刪除的點(diǎn)的入度全部大于0,說明存在環(huán)
            #include<algorithm>
            #include
            <iostream>
            #include
            <cstring>
            #include
            <string>
            #include
            <cstdio>
            using namespace std;
            string cover[4][4];
            bool exist[10];//第i個(gè)窗口是否在快照中出現(xiàn)
            int id[10];//入度
            bool g[10][10];
            int t;//頂點(diǎn)數(shù)
            int n=4;
            int a[4][4];
            void getweizhi()
            {
                
            int i,j,k;
                
            for(i=0;i<n;i++)
                
            {
                    
            for(j=0;j<n;j++)
                        cover[i][j].erase();
                }

                
            for(k=1;k<=9;k++)
                
            {
                    i
            =(k-1)/3;
                    j
            =(k-1)%3;
                    cover[i][j]
            +=char(k+'0');
                    cover[i][j
            +1]+=char(k+'0');
                    cover[i
            +1][j]+=char(k+'0');
                    cover[i
            +1][j+1]+=char(k+'0');
                }

            }

            void init()
            {
                
            int i,j,k;
                memset(g,
            0,sizeof(g));
                memset(exist,
            false,sizeof(exist));
                memset(id,
            0,sizeof(id));
                t
            =0;
                
            for(i=0;i<4;i++)
                
            {
                    
            for(j=0;j<4;j++)
                    
            {
                        cin
            >>k;
                        a[i][j]
            =k;
                        
            if (!exist[k])
                        
            {
                            t
            ++;
                            exist[k]
            =true;
                        }

                    }

                }

            }

            void build()
            {
                
            int i,j,p;
                
            for(i=0;i<n;i++)
                
            for(j=0;j<n;j++)
                
            {
                    
            for(p=0;p<=cover[i][j].length()-1;p++)
                        
            if (cover[i][j][p]-'0'!=a[i][j]&&!(g[a[i][j]][cover[i][j][p]-'0']))
                        
            {
                            g[a[i][j]][cover[i][j][p]
            -'0']=true;
                            id[cover[i][j][p]
            -'0']++;
                        }

                }

            }

            bool check()
            {
                
            int i,j,k;
                
            for(k=0;k<t;k++)
                
            {
                    i
            =1;
                    
            while(!exist[i]||(i<=9&&id[i]>0)) i++;
                    
            if (i>9)//剩余的點(diǎn)中每個(gè)點(diǎn)入度都超過0
                    {
                        
            return false;
                    }

                    exist[i]
            =false;
                    
            for(j=1;j<=9;j++)
                        
            if (exist[j]&&g[i][j]) id[j]--;
                }

                
            return true;
            }

            int main()
            {
                
            string tmp;
                getweizhi();
                
            while(cin>>tmp)
                
            {
                    
            if (tmp=="ENDOFINPUT")
                    
            {
                        
            break;
                    }

                    init();
                    build();
                    
            if (check())
                        cout
            <<"THESE WINDOWS ARE CLEAN"<<endl;
                    
            else
                        cout
            <<"THESE WINDOWS ARE BROKEN"<<endl;
                    cin
            >>tmp;
                }

                
            return 0;
            }

            posted on 2012-04-02 22:56 jh818012 閱讀(142) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當(dāng)于是 取余3的意思 因?yàn)?3 的 二進(jìn)制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內(nèi)容較長,點(diǎn)擊標(biāo)題查看
            • --王私江
            久久丫精品国产亚洲av不卡| 久久青草国产精品一区| 亚洲伊人久久综合中文成人网| a级毛片无码兔费真人久久| 久久精品国产国产精品四凭| 无码任你躁久久久久久老妇App| 人妻无码精品久久亚瑟影视| 久久综合噜噜激激的五月天| 99久久国产综合精品成人影院| 青青草原综合久久大伊人导航| 久久久久久久久久久久久久| 国产亚洲欧美成人久久片| 欧美久久久久久| 青青草国产精品久久久久| 狠狠色综合网站久久久久久久高清| 国产精品久久国产精品99盘| 国内精品久久久久影院薰衣草| 99久久亚洲综合精品成人| 日本久久久久亚洲中字幕| 色婷婷久久久SWAG精品| 欧美久久综合性欧美| 久久99精品久久久久婷婷| 99久久香蕉国产线看观香| 久久国产视频99电影| 18岁日韩内射颜射午夜久久成人| 久久亚洲sm情趣捆绑调教| 日韩欧美亚洲综合久久影院Ds | 久久精品国产精品亚洲精品| 亚洲国产精品无码久久久久久曰| 国产精品无码久久综合| 亚洲午夜久久久| 欧美麻豆久久久久久中文| 精品国产热久久久福利| 亚洲国产精品人久久| 久久成人国产精品二三区| 精品久久久噜噜噜久久久| 日本欧美久久久久免费播放网| 久久精品国产亚洲AV不卡| 免费精品久久天干天干| 亚洲中文字幕无码一久久区| 伊人久久大香线蕉亚洲五月天|