• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1861

            Network

            Time Limit: 1000MS Memory Limit: 30000K
            Total Submissions: 9734 Accepted: 3630 Special Judge

            Description

            Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
            Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
            You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

            Input

            The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

            Output

            Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

            Sample Input

            4 6
            1 2 1
            1 3 1
            1 4 2
            2 3 1
            3 4 1
            2 4 1
            

            Sample Output

            1
            4
            1 2
            1 3
            2 3
            3 4
            

            本來不知道這題是個最小生成樹的,看圖論的一本書寫著,
            然后寫了鄰接表的kruskal,貌似書上這個效率比我的高
            然后就交了,模版題

            #include<algorithm>
            #include
            <iostream>
            #include
            <cstdio>
            #include
            <cstring>
            #include
            <cstdlib>
            using namespace std;
            #define maxn 1001
            #define maxm 20000
            int maxedge;
            struct node
            {
                
            int u,v,w;
            }
             edge[maxm];
            int parent[maxn];
            int n,m;
            int num;
            int ans[maxn];
            void ufset()
            {
                
            int i;
                
            for(i=1; i<=n; i++) parent[i]=-1;
            }

            int find(int x)
            {
                
            int s;
                
            for(s=x; parent[s]>=0; s=parent[s]);
                
            while (s!=x)//壓縮路徑,使后續查找加速
                {
                    
            int tmp=parent[x];
                    parent[x]
            =s;
                    x
            =tmp;
                }

                
            return s;
            }

            void union1(int R1,int R2)
            {
                
            int r1=find(R1),r2=find(R2);
                
            int tmp=parent[r1]+parent[r2];//兩個集合結點個數和
                if (parent[r1]>parent[r2])
                
            {
                    parent[r1]
            =r2;
                    parent[r2]
            =tmp;
                }

                
            else
                
            {
                    parent[r2]
            =r1;
                    parent[r1]
            =tmp;
                }

            }

            /*int cmp(const void *a const void *b)
            {
                node aa=*(struct node *)a;
                node bb=*(struct node *)b;
                return aa.w-bb.w;
            }
            */

            int cmp(struct node a,struct node b)
            {
                
            return a.w<b.w;
            }

            void kruskal()
            {
                
            int i,j;
                
            int sumweight=0;
                
            int u,v;
                num
            =0;
                ufset();
                
            for(i=0; i<m; i++)
                
            {
                    u
            =edge[i].u;
                    v
            =edge[i].v;
                    
            if (find(u)!=find(v))
                    
            {
                        
            if (edge[i].w>maxedge)
                        
            {
                            maxedge
            =edge[i].w;
                        }

                        ans[num]
            =i;num++;
                        union1(u,v);
                    }

                    
            if (num>=n-1)
                    
            {
                        
            break;
                    }

                }

            }

            int main()
            {
                
            int u,v,w;
                
            while (scanf("%d%d",&n,&m)!=EOF)
                
            {
                    
            for(int i=0; i<m; i++)
                    
            {
                        scanf(
            "%d%d%d",&u,&v,&w);
                        edge[i].u
            =u;
                        edge[i].v
            =v;
                        edge[i].w
            =w;
                    }

                    sort(edge,edge
            +m,cmp);
                    maxedge
            =0;
                    kruskal();
                    printf(
            "%d\n",maxedge);
                    printf(
            "%d\n",num);
                    
            for (int i=0;i<num;i++)
                        printf(
            "%d %d\n",edge[ans[i]].u,edge[ans[i]].v);
                }

                
            return 0;
            }

            posted on 2012-04-02 00:16 jh818012 閱讀(235) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            久久青青草原精品国产| 99久久免费国产精品| 亚洲va国产va天堂va久久| 麻豆一区二区99久久久久| 99久久精品国产一区二区三区| 香蕉久久永久视频| 狠狠色婷婷久久一区二区三区| 麻豆久久| 久久精品视频网| 亚洲午夜久久久久久久久电影网| 蜜桃麻豆www久久| 综合网日日天干夜夜久久| 精品久久久久久无码中文野结衣| 亚洲精品乱码久久久久久蜜桃不卡| 色噜噜狠狠先锋影音久久| 日本人妻丰满熟妇久久久久久| 久久强奷乱码老熟女| 日韩欧美亚洲综合久久影院d3| 欧美大香线蕉线伊人久久| 国产精品99久久久精品无码| 久久久艹| 久久精品?ⅴ无码中文字幕| 久久成人国产精品| 777午夜精品久久av蜜臀| 欧美一级久久久久久久大片| 精品久久人人妻人人做精品| 久久久久中文字幕| 亚洲精品乱码久久久久66| 久久亚洲日韩看片无码| 久久人人爽人人爽人人片av麻烦| 欧美麻豆久久久久久中文| 日本欧美国产精品第一页久久| 久久人人爽人人爽AV片| 色诱久久av| 久久人妻无码中文字幕| 亚洲精品美女久久久久99| 久久亚洲精品成人AV| 99久久人妻无码精品系列蜜桃| 日韩精品国产自在久久现线拍 | 99久久综合狠狠综合久久| 久久精品国产亚洲综合色|