• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj1861

            Network

            Time Limit: 1000MS Memory Limit: 30000K
            Total Submissions: 9734 Accepted: 3630 Special Judge

            Description

            Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
            Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
            You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

            Input

            The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

            Output

            Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

            Sample Input

            4 6
            1 2 1
            1 3 1
            1 4 2
            2 3 1
            3 4 1
            2 4 1
            

            Sample Output

            1
            4
            1 2
            1 3
            2 3
            3 4
            

            本來不知道這題是個最小生成樹的,看圖論的一本書寫著,
            然后寫了鄰接表的kruskal,貌似書上這個效率比我的高
            然后就交了,模版題

            #include<algorithm>
            #include
            <iostream>
            #include
            <cstdio>
            #include
            <cstring>
            #include
            <cstdlib>
            using namespace std;
            #define maxn 1001
            #define maxm 20000
            int maxedge;
            struct node
            {
                
            int u,v,w;
            }
             edge[maxm];
            int parent[maxn];
            int n,m;
            int num;
            int ans[maxn];
            void ufset()
            {
                
            int i;
                
            for(i=1; i<=n; i++) parent[i]=-1;
            }

            int find(int x)
            {
                
            int s;
                
            for(s=x; parent[s]>=0; s=parent[s]);
                
            while (s!=x)//壓縮路徑,使后續查找加速
                {
                    
            int tmp=parent[x];
                    parent[x]
            =s;
                    x
            =tmp;
                }

                
            return s;
            }

            void union1(int R1,int R2)
            {
                
            int r1=find(R1),r2=find(R2);
                
            int tmp=parent[r1]+parent[r2];//兩個集合結點個數和
                if (parent[r1]>parent[r2])
                
            {
                    parent[r1]
            =r2;
                    parent[r2]
            =tmp;
                }

                
            else
                
            {
                    parent[r2]
            =r1;
                    parent[r1]
            =tmp;
                }

            }

            /*int cmp(const void *a const void *b)
            {
                node aa=*(struct node *)a;
                node bb=*(struct node *)b;
                return aa.w-bb.w;
            }
            */

            int cmp(struct node a,struct node b)
            {
                
            return a.w<b.w;
            }

            void kruskal()
            {
                
            int i,j;
                
            int sumweight=0;
                
            int u,v;
                num
            =0;
                ufset();
                
            for(i=0; i<m; i++)
                
            {
                    u
            =edge[i].u;
                    v
            =edge[i].v;
                    
            if (find(u)!=find(v))
                    
            {
                        
            if (edge[i].w>maxedge)
                        
            {
                            maxedge
            =edge[i].w;
                        }

                        ans[num]
            =i;num++;
                        union1(u,v);
                    }

                    
            if (num>=n-1)
                    
            {
                        
            break;
                    }

                }

            }

            int main()
            {
                
            int u,v,w;
                
            while (scanf("%d%d",&n,&m)!=EOF)
                
            {
                    
            for(int i=0; i<m; i++)
                    
            {
                        scanf(
            "%d%d%d",&u,&v,&w);
                        edge[i].u
            =u;
                        edge[i].v
            =v;
                        edge[i].w
            =w;
                    }

                    sort(edge,edge
            +m,cmp);
                    maxedge
            =0;
                    kruskal();
                    printf(
            "%d\n",maxedge);
                    printf(
            "%d\n",num);
                    
            for (int i=0;i<num;i++)
                        printf(
            "%d %d\n",edge[ans[i]].u,edge[ans[i]].v);
                }

                
            return 0;
            }

            posted on 2012-04-02 00:16 jh818012 閱讀(236) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿

            文章檔案(85)

            搜索

            最新評論

            • 1.?re: poj1426
            • 我嚓,,輝哥,,居然搜到你的題解了
            • --season
            • 2.?re: poj3083
            • @王私江
              (8+i)&3 相當于是 取余3的意思 因為 3 的 二進制是 000011 和(8+i)
            • --游客
            • 3.?re: poj3414[未登錄]
            • @王私江
              0ms
            • --jh818012
            • 4.?re: poj3414
            • 200+行,跑了多少ms呢?我的130+行哦,你菜啦,哈哈。
            • --王私江
            • 5.?re: poj1426
            • 評論內容較長,點擊標題查看
            • --王私江
            亚洲精品乱码久久久久久自慰| 亚洲乱码精品久久久久..| 国内精品久久久久久久影视麻豆| 久久激情五月丁香伊人| 久久精品国产乱子伦| 久久国产精品-国产精品| 亚洲&#228;v永久无码精品天堂久久| 国产精品久久久久久五月尺| 久久99精品久久久久久| 久久丫忘忧草产品| 久久99久久成人免费播放| 久久综合给合久久狠狠狠97色69| 久久99久久成人免费播放| 99久久精品国产麻豆| 亚洲国产成人久久笫一页| 日本福利片国产午夜久久| 无码任你躁久久久久久老妇App| 99久久www免费人成精品| 久久国产乱子伦免费精品| 成人综合久久精品色婷婷| 久久久精品久久久久久| 久久se精品一区二区| 日本久久久久亚洲中字幕 | 成人亚洲欧美久久久久| 国产美女亚洲精品久久久综合| 理论片午午伦夜理片久久 | 色妞色综合久久夜夜| 18禁黄久久久AAA片| 无夜精品久久久久久| 久久se这里只有精品| 国产午夜精品理论片久久| 国产亚洲综合久久系列| 久久精品国产久精国产思思 | 91麻豆国产精品91久久久| 三级韩国一区久久二区综合| 久久精品一区二区三区中文字幕| 久久综合九色综合97_久久久| 国产91久久精品一区二区| 国产V综合V亚洲欧美久久| 97精品久久天干天天天按摩| 大伊人青草狠狠久久|