• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            asm, c, c++ are my all
            -- Core In Computer
            posts - 139,  comments - 123,  trackbacks - 0

            /********************************************\
            |????歡迎轉載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
            \********************************************/


            C++對象模型(8) - Chapter 3. The Semantics of Data
            ?

            作者: Jerry Cat
            時間: 2006/11/15
            鏈接:?
            http://m.shnenglu.com/jerysun0818/archive/2006/11/15/15185.html


            ;-----------------------------------------------------------------------
            ;Chapter 3. The Semantics of Data
            ;-----------------------------------------------------------------------
            Chapter 3. The Semantics of Data - 空類不空

            class X {};
            class Y : public virtual X {};
            class Z : public virtual X {};
            class A : public Y, public Z {};
            None of these classes contains any explicit data—any anything, in fact, except an inheritance
            relationship—so he apparently believed the size of each class should be 0. It wasn't,
            of course—not even the apparently benign class X:

            sizeof X yielded 1
            sizeof Y yielded 8
            sizeof Z yielded 8
            sizeof A yielded 12
            Let's look at each declaration in turn and see what's going on. An empty class, such as

            // sizeof X == 1
            class X {};
            in practice is never empty. Rather it has an associated size of 1 byte—a char member inserted
            by the compiler. This allows two objects of the class, such as

            X a, b;
            if ( &a == &b ) cerr << "yipes!" << endl;//to be allocated unique addresses in memory.哈!

            // sizeof Y == sizeof Z == 8
            class Y : public virtual X{};
            class Z : public virtual X{};
            On his machine, the size of both classes Y and Z is 8. This size, however, is partially machine dependent. It also depends in part on the compiler implementation being used. The given size of both class Y and class Z on any machine is the interplay of three factors:

            (1). Language support overhead. There is an associated overhead incurred in the language support of virtual base classes. Within the derived class, this overhead is reflected as some form of pointer, either to the virtual base class subobject or to an associated table within which either the address or offset to the virtual base class subobject is stored. On my correspondent's machine, the pointer is 4 bytes. (Virtual base classes are discussed in Section 3.4.)

            (2). Compiler optimization of recognized special cases. There is the 1 byte size of the virtual base class X subobject also present within Y (and Z). Traditionally, this is placed at the end of the "fixed" (that is, invariant) portion of the derived class. Some compilers now provide special support for an empty virtual base class (the paragraph following item 3 discusses this in more detail). Our correspondent's compiler, however, did not provide this special handling.

            (3). Alignment constraints. The size of class Y (and Z) at this point is 5 bytes. On most machines, aggregate structures have an alignment constraint so that they can be efficiently loaded from and stored to memory. On my correspondent's machine, alignment of an aggregate is on a 4-byte boundary. So class Y (and Z) requires 3 bytes of padding. The result is a final size of 8.

            The C++ object model representation for nonstatic data members optimizes for space and access time (and to preserve compatibility with the C language layout of the C struct) by storing the members directly within each class object. This is also true for the inherited nonstatic data members of both virtual and nonvirtual base classes, although the ordering of their layout is left undefined. Static data members are maintained within the global data segment of the program and do not affect the size of individual class objects.(靜態數據成員被放在全局數據段, 并不影響單個類的大小)
            ?
            Only one instance of a static data member of a class exists within a program regardless of the number of times that class is an object of direct or indirect derivation. (The static data members of a template class behave slightly differently. See Section 7.1 for a discussion.)模板類的靜態數據成語有所不同

            類的大小讓你吃驚地"大"的原因來源于2方面:
            (1). Additional data members added by the compilation system to support some language functionality (primarily the virtuals)

            (2). Alignment requirements on the data members and data structures as a whole

            posted on 2006-11-15 16:55 Jerry Cat 閱讀(570) 評論(0)  編輯 收藏 引用

            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            常用鏈接

            留言簿(7)

            隨筆檔案

            最新隨筆

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            97精品国产97久久久久久免费 | 国产精品久久久久影院嫩草| 无码精品久久久天天影视| AAA级久久久精品无码片| 丁香五月综合久久激情| 一本久道久久综合狠狠爱| 久久精品国产只有精品2020| 亚洲欧美国产日韩综合久久| 久久99国产亚洲高清观看首页| 亚洲国产日韩欧美综合久久| 好久久免费视频高清| 模特私拍国产精品久久| 伊人热人久久中文字幕| 免费无码国产欧美久久18| 国产精品VIDEOSSEX久久发布| 亚洲级αV无码毛片久久精品| 国产高潮国产高潮久久久91| 亚洲AV日韩精品久久久久久| 伊人色综合久久天天人守人婷| 伊人久久精品线影院| 久久国产亚洲精品无码| 国产美女亚洲精品久久久综合| 久久久久亚洲精品无码网址 | 欧美激情精品久久久久久| 久久成人国产精品二三区| 久久精品亚洲日本波多野结衣| 久久青青草视频| 四虎影视久久久免费观看| 99久久免费国产精品| 国产免费福利体检区久久| 色综合久久久久| 人人狠狠综合久久亚洲88| 久久免费视频观看| 精品久久久久久中文字幕| 国内精品久久久久影院日本| 久久精品国产清高在天天线| 久久久女人与动物群交毛片 | 久久本道久久综合伊人| www亚洲欲色成人久久精品| 国产精品美女久久久久av爽| 国产成人香蕉久久久久|