青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

asm, c, c++ are my all
-- Core In Computer
posts - 139,  comments - 123,  trackbacks - 0

/********************************************\
|????歡迎轉載, 但請保留作者姓名和原文鏈接, 祝您進步并共勉!???? |
\********************************************/

C++對象模型(3) - An Object Distinction
?
作者: Jerry Cat
時間: 2006/04/23
鏈接: http://m.shnenglu.com/jerysun0818/archive/2006/04/24/6114.html


1.3 An Object Distinction
-------------------------
intercede in a and b:在a和b間進行調解
The most common inadvertent mixing of idioms occurs when a concrete instance of a base class, such as

Library_materials thing1;
is used to program some aspect of polymorphism:

// class Book : public Library_materials { ...};
Book book;

// Oops: thing1 is not a Book!
// Rather, book is "sliceD" — thing1就是個只保留book的上半身的殘廢東西
// thing1 remains a Library_materials

thing1 = book;

// Oops: invokes
// Library_materials::check_in()
thing1.check_in();
rather than a pointer or reference of the base class:

// OK: thing2 now references book, 因為基類和派生類的布局是"基部重合在一起的", 派生類還是超集哩!
// 基類在"上"(低址處), 派生類多出的部分緊接著"連"在下面; 引用(本質上是指針)和指針對這兩種數據類型
// 有類似匯編中word ptr 和 dword ptr的關系, 它倆的首址是相同的. 編譯器會自動鑒別基類和子類從而調整
// 類似word ptr 和 dword ptr的這種類的"類型尋址"操作
// 而且Scott Meyer說過它們是一種"is a"的關系:"The derived is a base class"
// 向上(基類方向)轉換沒問題的, 向下轉換一般不可 - 簡直"無中生有"嘛! 但MFC中對動態類對象CDerived(用
// DECLARE_DYNCREATE宏 和 IMPLEMENT_DYNCREATE宏在程序運行時而非編譯動態生成)倒可用DYNAMIC_DOWNCAST
// 宏來完成將指向CBase的指針Downcast成指向它:
// CDerived * pDerived = DYNAMIC_DOWNCAST(CDerived, pBase); //CBase *pBase;
// 原型為DYNAMIC_DOWNCAST( class, pointer )

Library_materials &thing2 = book;//本質是地址,用起來象對象! 對象別名也,從這角度就是對象了嘛^_^

// OK: invokes Book::check_in()
thing2.check_in();

只有指針和引用才能"救多態"!
Although you can manipulate a base class object of an inheritance hierarchy either directly or indirectly, only the indirect manipulation of the object through a pointer or reference supports the polymorphism necessary for OO programming. The definition and use of thing2 in the previous example is a well-behaved instance of the OO paradigm. The definition and use of thing1 falls outside the OO idiom; it reflects a well-behaved instance of the ADT paradigm. Whether the behavior of thing1 is good or bad depends on what the programmer intended. In this example, its behavior is very likely a surprise.

// represent objects: uncertain type
Library_materials *px = retrieve_some_material();
Library_materials &rx = *px;

// represents datum: no surprise
Library_materials dx = *px;
it can never be said with certainty what the actual type of the object is that px or rx addresses. It can only be said that it is either a Library_materials object or a subtype rooted by Library_materials class. dx, however, is and can only be an object of the Library_materials class. Later in this section, I discuss why this behavior, although perhaps unexpected, is well behaved.

Although the polymorphic manipulation of an object requires that the object be accessed either through a pointer or a reference, the manipulation of a pointer or reference in C++ does not in itself necessarily result in polymorphism! For example, consider

// no polymorphism
int *pi;

// no language supported polymorphism
void *pvi;

// ok: class x serves as a base class
x *px;
多態只存在于
In C++, polymorphism exists only within individual public class hierarchies. px, for example, may address either an object of its own type or a type publicly derived from it (not considering ill-behaved casts). Nonpublic derivation and pointers of type void* can be spoken of as polymorphic, but they are without explicit language support; that is, they must be managed by the programmer through explicit casts. (One might say that they are not first-class polymorphic objects.)

The C++ language supports polymorphism in the following ways:
1. Through a set of implicit conversions, such as the conversion of a derived class pointer to a pointer of its public base type:
shape *ps = new circle();

2. Through the virtual function mechanism:
ps->rotate();

3. Through the dynamic_cast and typeid operators:
if ( circle *pc = dynamic_cast< circle* >( ps )) ...//象MFC中DYNAMIC_DOWNCAST和DECLARE_DYNCREATE,
//IMPLEMENT_DYNCREATE, IsKindOf(RUNTIME_CLASS(class))的組合拳

// example for CObject::IsKindOf
/* BOOL IsKindOf( const CRuntimeClass* pClass ) const; */
CAge a(21); // Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT( a.IsKindOf( RUNTIME_CLASS( CAge ) ) );
ASSERT( a.IsKindOf( RUNTIME_CLASS( CObject ) ) );

// example for RUNTIME_CLASS
/* RUNTIME_CLASS( class_name ) */
Use this macro to get the run-time class structure from the name of a C++ class.

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class specified by class_name. Only CObject-derived classes declared with DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL will return pointers to a CRuntimeClass structure.

CRuntimeClass* prt = RUNTIME_CLASS( CAge );
ASSERT( lstrcmp( prt->m_lpszClassName, "CAge" )? == 0 );

=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=
The memory requirements to represent a class object in general are the following:

1.) The accumulated size of its nonstatic data members
2.) Plus any padding (between members or on the aggregate boundary itself) due to alignment constraints (or simple efficiency)
3.) Plus any internally generated overhead to support the virtuals

The memory requirement to represent a pointer, [2] however, is a fixed size regardless of the type it addresses. For example, given the following declaration of a ZooAnimal class:

? [2]Or to represent a reference; internally, a reference is generally implemented as a pointer and the object syntax transformed into the indirection required of a pointer.
class ZooAnimal {
public:
?? ZooAnimal();
?? virtual ~ZooAnimal();

?? // ...

?? virtual void rotate();
protected:
?? int loc;
?? String name;
};

ZooAnimal za( "Zoey" );
ZooAnimal *pza = &za;

a likely layout of the class object za and the pointer pza is pictured in Figure 1.4. (I return to the layout of data members in Chapter 3.)

Figure 1.4. Layout of Object and Pointer of Independent Class


layout1.GIF

The Type of a Pointer:
=-=-=-=-=-=-=-=-=-=-=
But how, then, does a pointer to a ZooAnimal differ from, say, a pointer to an integer or a pointer to a template Array instantiated with a String?

ZooAnimal *px;
int *pi
Array< String > *pta;
In terms of memory requirements, there is generally no difference: all three need to be allocated sufficient memory to hold a machine address (usually a machine word). So the difference between pointers to different types rests neither in the representation of the pointer nor in the values (addresses) the pointers may hold. The difference lies in the type of object being addressed. That is, the type of a pointer instructs the compiler as to how to interpret the memory found at a particular address and also just how much memory that interpretation should span:

An integer pointer addressing memory location 1000 on a 32-bit machine spans the address space 1000—1003.

The ZooAnimal pointer, if we presume a conventional 8-byte String (a 4-byte character pointer and an integer to hold the string length), spans the address space 1000—1015.

Hmm. Just out of curiosity, what address space does a void* pointer that holds memory location 1000 span? That's right, we don't know. That's why a pointer of type void* can only hold an address and not actually operate on the object it addresses.

So a cast in general is a kind of compiler directive. In most cases, it does not alter the actual address a pointer contains. Rather, it alters only the interpretation of the size and composition of the memory being addressed.

Adding Polymorphism
=-=-=-=-=-=-=-=-=-=
Now, let's define a Bear as a kind of ZooAnimal. This is done, of course, through public inheritance:

class Bear : public ZooAnimal {
public:
?? Bear();
?? ~Bear();
?? // ...
?? void rotate();
?? virtual void dance();
?? // ...
protected:
?? enum Dances { ... };

?? Dances dances_known;
?? int cell_block;
};

Bear b( "Yogi" );
Bear *pb = &b;
Bear &rb = *pb;
What can we say about the memory requirements of b, pb, and rb? Both the pointer and reference require a single word of storage (4 bytes on a 32-bit processor). The Bear object itself, however, requires 24 bytes (the size of a ZooAnimal [16 bytes] plus the 8 bytes Bear introduces). A likely memory layout is pictured in Figure 1.5.

Figure 1.5. Layout of Object and Pointer of Derived Class

layout2.GIF

Okay, given that our Bear object is situated at memory location 1000, what are the real differences between a Bear and ZooAnimal pointer?

Bear b;
ZooAnimal *pz = &b;
Bear *pb = &b;
Each addresses the same first byte of the Bear object. The difference is that the address span of pb encompasses the entire Bear object, while the span of pz encompasses only the ZooAnimal subobject of Bear.

pz cannot directly access any members other than those present within the ZooAnimal subobject, except through the virtual mechanism:

// illegal: cell_block not a member
// of ZooAnimal, although we ``know''
// pz currently addresses a Bear object
pz->cell_block;
// okay: an explicit downcast
(( Bear* )pz)->cell_block;

// better: but a run-time operation
if ( Bear* pb2 = dynamic_cast< Bear* >( pz ))
?? pb2->cell_block;

// ok: cell_block a member of Bear
pb->cell_block;
When we write

pz->rotate();
the type of pz determines the following at compile time:

The fixed, available interface (that is, pz may invoke only the ZooAnimal public interface)

The access level of that interface (for example, rotate() is a public member of ZooAnimal)

The type of the object that pz addresses at each point of execution determines the instance of rotate() invoked. The encapsulation of the type information is maintained not in pz but in the link between the object's vptr and the virtual table the vptr addresses (see Section 4.2 for a full discussion of virtual functions).
So, then, why is it that, given

Bear b;
ZooAnimal za = b;

// ZooAnimal::rotate() invoked
za.rotate();
the instance of rotate() invoked is the ZooAnimal instance and not that of Bear? Moreover, if memberwise initialization copies the values of one object to another, why is za's vptr not addressing Bear's virtual table?

The answer to the second question is that the compiler intercedes in the initialization and assignment of one class object with another. The compiler must ensure that if an object contains one or more vptrs, those vptr values are not initialized or changed by the source object .
子類是基類, 基類非子類. 兒子是老子(生的), 老子非兒子(生的).
The answer to the first question is that za is not (and can never be) a Bear; it is (and can never be anything but) a ZooAnimal. Polymorphism, the potential to be of more than one type, is not physically possible in directly accessed objects. Paradoxically, direct object manipulation is not supported under OO programming. For example, given the following set of definitions:
{
?? ZooAnimal za;
?? ZooAnimal *pza;

?? Bear b;
?? Panda *pp = new Panda;

?? pza = &b;
}
one possible memory layout is pictured in Figure 1.6.

Figure 1.6. Memory Layout of Sequence of Definitions

layout3.GIF

Assigning pz the address of either za, b, or that contained by pp is obviously not a problem. A pointer and a reference support polymorphism because they do not involve any type-dependent commitment of resources. Rather, all that is altered is the interpretation of the size and composition of the memory they address.

Any attempt to alter the actual size of the object za, however, violates the contracted resource requirements of its definition. Assign the entire Bear object to za and the object overflows its allocated memory. As a result, the executable is, literally, corrupted, although the corruption may not manifest itself as a core dump.

When a base class object is directly initialized or assigned with a derived class object, the derived object is sliced to fit into the available memory resources of the base type. There is nothing of the derived type remaining. Polymorphism is not present, and an observant compiler can resolve an invocation of a virtual function through the object at compile time, thus by-passing the virtual mechanism. This can be a significant performance win if the virtual function is defined as inline.
多態是面向對象OO的實質
To summarize, polymorphism is a powerful design mechanism that allows for the encapsulation of related types behind an abstract public interface, such as our Library_materials hierarchy. The cost is an additional level of indirection, both in terms of memory acquisition and type resolution. C++ supports polymorphism through class pointers and references. This style of programming is called object-oriented.
ADT抽象數據類型是基于對象OB
C++ also supports a concrete ADT style of programming now called object-based (OB)—nonpolymorphic data types, such as a String class. A String class exhibits a nonpolymorphic form of encapsulation; it provides a public interface and private implementation (both of state and algorithm) but does not support type extension. An OB design can be faster and more compact than an equivalent OO design. Faster because all function invocations are resolved at compile time and object construction need not set up the virtual mechanism, and more compact because each class object need not carry the additional overhead traditionally associated with the support of the virtual mechanism. However, an OB design also is less flexible.

posted on 2006-04-24 03:45 Jerry Cat 閱讀(700) 評論(0)  編輯 收藏 引用

<2006年7月>
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345

常用鏈接

留言簿(7)

隨筆檔案

最新隨筆

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久天天躁狠狠躁夜夜爽蜜月 | 亚洲欧美激情视频在线观看一区二区三区| 久久爱www久久做| 中文亚洲视频在线| 亚洲一区二区三区在线视频| 亚洲性线免费观看视频成熟| 亚洲欧美久久久| 久久久久久久国产| 欧美99在线视频观看| 亚洲经典一区| 亚洲日本欧美在线| 亚洲综合精品四区| 久久中文字幕导航| 欧美超级免费视 在线| 亚洲欧美一区二区三区在线| 国产精品久久久久国产精品日日| 欧美视频一区二区| 国产一区999| 亚洲精品国产系列| 欧美一区二区免费视频| 久久综合色婷婷| 亚洲日本精品国产第一区| 在线中文字幕不卡| 久久久久网站| 欧美午夜影院| 在线播放豆国产99亚洲| 这里只有精品丝袜| 久久亚洲二区| 亚洲先锋成人| 欧美韩国一区| 好吊成人免视频| 亚洲天堂偷拍| 欧美国产视频在线观看| 亚洲免费中文字幕| 欧美日韩免费观看一区| 在线观看日韩精品| 欧美一区二区精品在线| 日韩一二在线观看| 免费观看国产成人| 韩国三级电影久久久久久| 亚洲女同精品视频| 日韩视频―中文字幕| 欧美成人精品| 亚洲黄色免费| 美日韩精品视频免费看| 亚洲欧美一区在线| 欧美视频免费在线| 一本色道久久综合亚洲二区三区| 免费成人网www| 欧美一区在线视频| 国产网站欧美日韩免费精品在线观看| 亚洲视频福利| 亚洲日韩第九十九页| 美女日韩在线中文字幕| 在线观看一区视频| 久久亚洲色图| 欧美一区二区高清| 国产精品欧美日韩一区| 亚洲午夜精品久久| 一区二区三区国产在线| 欧美日韩国产在线观看| 中文网丁香综合网| 亚洲亚洲精品三区日韩精品在线视频 | 亚洲视频在线观看三级| 亚洲久色影视| 欧美三区在线| 先锋亚洲精品| 欧美有码在线观看视频| 黄色亚洲大片免费在线观看| 久久综合伊人77777麻豆| 久久久久久免费| 国产精品一区毛片| 亚洲欧美在线x视频| 亚洲一区国产一区| 欧美区国产区| 亚洲在线中文字幕| 亚洲欧美清纯在线制服| 国产欧美一区二区精品仙草咪| 欧美在线观看视频| 久久精品九九| 亚洲精品乱码视频| 妖精视频成人观看www| 国产精品老牛| 久久在线免费| 欧美日韩国产经典色站一区二区三区| 妖精成人www高清在线观看| 亚洲午夜av电影| 精品成人一区二区| 亚洲蜜桃精久久久久久久| 国产欧美日韩一区二区三区| 免费观看成人网| 欧美午夜视频| 欧美顶级少妇做爰| 国产精品日韩在线一区| 美国成人直播| 国产精品国产a级| 欧美承认网站| 国产精品爽黄69| 亚洲国产精品va在线观看黑人| 欧美日韩你懂的| 久久这里只有| 欧美性天天影院| 欧美国产精品一区| 国产日韩精品一区二区三区在线| 欧美+亚洲+精品+三区| 国产精品久久久久国产精品日日| 美日韩在线观看| 国产日韩专区| 一区二区三区日韩| 亚洲精品一区二区网址| 久久精彩免费视频| 欧美一区二区成人| 欧美日韩另类字幕中文| 欧美国产国产综合| 韩国v欧美v日本v亚洲v| 亚洲一区在线直播| 亚洲一区二区三区在线播放| 欧美成人激情在线| 欧美国产日韩精品| 亚洲大片av| 久久九九精品| 久久久久久久久久久一区| 国产精品久久看| 宅男噜噜噜66一区二区| 中日韩美女免费视频网站在线观看| 久久久欧美一区二区| 久久精品日产第一区二区| 国产精品久久久久久超碰| 日韩视频一区二区在线观看| 日韩一区二区久久| 欧美黑人在线观看| 亚洲欧美乱综合| 久久九九久精品国产免费直播| 一本色道久久综合狠狠躁篇的优点| 欧美在线视频一区二区| 欧美一区二区三区视频在线观看| 欧美日韩日本网| 亚洲精品欧美在线| 99国内精品久久| 欧美精选午夜久久久乱码6080| 亚洲第一视频| 亚洲精品四区| 欧美日韩国产精品成人| 亚洲免费高清| 午夜在线不卡| 国产亚洲精品久久久久婷婷瑜伽| 午夜精品一区二区三区在线播放| 久久国产精品免费一区| 国外成人网址| 欧美成人在线影院| 亚洲精品免费一二三区| 亚洲视频一区二区| 国产婷婷色一区二区三区四区 | 国产精品一香蕉国产线看观看| 亚洲无吗在线| 久久www免费人成看片高清 | 国产精品婷婷| 欧美一区1区三区3区公司| 久久综合网络一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美成人一二三| 亚洲视频一区| 久久综合网络一区二区| 99精品免费网| 国产日韩欧美自拍| 欧美sm视频| 亚洲视频axxx| 欧美国产成人在线| 亚洲欧美日韩一区二区三区在线| 国产日韩欧美一区| 欧美xx视频| 午夜精品视频在线| 亚洲激情视频在线| 久久精品免视看| 一本一本久久a久久精品综合麻豆| 国产精品嫩草影院av蜜臀| 久久久综合免费视频| 一区二区日韩伦理片| 美女精品在线| 亚洲综合精品四区| 亚洲国产成人av| 国产精品一区久久| 欧美人妖在线观看| 久久久精品免费视频| 在线视频你懂得一区| 欧美国产亚洲视频| 久久久精品2019中文字幕神马| 99国产精品一区| 亚洲国产精品一区二区尤物区 | 这里只有精品丝袜| 亚洲国产老妈| 美女图片一区二区| 久久精品国产2020观看福利| 亚洲高清资源综合久久精品| 欧美喷潮久久久xxxxx| 久久精品国产免费观看| 亚洲天堂成人| 亚洲激情影院| 欧美成人综合网站| 久久免费99精品久久久久久|