青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

jeromewen

努力中
隨筆 - 9, 文章 - 0, 評論 - 22, 引用 - 0
數據加載中……

Playing with ptrace, Part I

來自http://www.linuxjournal.com/article/6100
SysAdmin

Using ptrace allows you to set up system call interception and modification at the user level.

Have you ever wondered how system calls can be intercepted? Have you ever tried fooling the kernel by changing system call arguments? Have you ever wondered how debuggers stop a running process and let you take control of the process?

If you are thinking of using complex kernel programming to accomplish tasks, think again. Linux provides an elegant mechanism to achieve all of these things: the ptrace (Process Trace) system call. ptrace provides a mechanism by which a parent process may observe and control the execution of another process. It can examine and change its core image and registers and is used primarily to implement breakpoint debugging and system call tracing.

In this article, we learn how to intercept a system call and change its arguments. In Part II of the article we will study advanced techniques--setting breakpoints and injecting code into a running program. We will peek into the child process' registers and data segment and modify the contents. We will also describe a way to inject code so the process can be stopped and execute arbitrary instructions.

Basics

Operating systems offer services through a standard mechanism called system calls. They provide a standard API for accessing the underlying hardware and low-level services, such as the filesystems. When a process wants to invoke a system call, it puts the arguments to system calls in registers and calls soft interrupt 0x80. This soft interrupt is like a gate to the kernel mode, and the kernel will execute the system call after examining the arguments.

On the i386 architecture (all the code in this article is i386-specific), the system call number is put in the register %eax. The arguments to this system call are put into registers %ebx, %ecx, %edx, %esi and %edi, in that order. For example, the call:

write(2, "Hello", 5)

roughly would translate into

movl   $4, %eax
movl   $2, %ebx
movl   $hello,%ecx
movl   $5, %edx
int    $0x80
where $hello points to a literal string "Hello".

So where does ptrace come into picture? Before executing the system call, the kernel checks whether the process is being traced. If it is, the kernel stops the process and gives control to the tracking process so it can examine and modify the traced process' registers.

Let's clarify this explanation with an example of how the process works:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>   /* For constants 
                                   ORIG_EAX etc */
int main()
{   pid_t child;
    long orig_eax;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
        wait(NULL);
        orig_eax = ptrace(PTRACE_PEEKUSER, 
                          child, 4 * ORIG_EAX, 
                          NULL);
        printf("The child made a "
               "system call %ld\n", orig_eax);
        ptrace(PTRACE_CONT, child, NULL, NULL);
    }
    return 0;
}

When run, this program prints:

The child made a system call 11
along with the output of ls. System call number 11 is execve, and it's the first system call executed by the child. For reference, system call numbers can be found in /usr/include/asm/unistd.h.

As you can see in the example, a process forks a child and the child executes the process we want to trace. Before running exec, the child calls ptrace with the first argument, equal to PTRACE_TRACEME. This tells the kernel that the process is being traced, and when the child executes the execve system call, it hands over control to its parent. The parent waits for notification from the kernel with a wait() call. Then the parent can check the arguments of the system call or do other things, such as looking into the registers.

When the system call occurs, the kernel saves the original contents of the eax register, which contains the system call number. We can read this value from child's USER segment by calling ptrace with the first argument PTRACE_PEEKUSER, shown as above.

After we are done examining the system call, the child can continue with a call to ptrace with the first argument PTRACE_CONT, which lets the system call continue.

ptrace Parameters

ptrace is called with four arguments:

long ptrace(enum __ptrace_request request,
            pid_t pid,
            void *addr,
            void *data);

The first argument determines the behaviour of ptrace and how other arguments are used. The value of request should be one of PTRACE_TRACEME, PTRACE_PEEKTEXT, PTRACE_PEEKDATA, PTRACE_PEEKUSER, PTRACE_POKETEXT, PTRACE_POKEDATA, PTRACE_POKEUSER, PTRACE_GETREGS, PTRACE_GETFPREGS, PTRACE_SETREGS, PTRACE_SETFPREGS, PTRACE_CONT, PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_DETACH. The significance of each of these requests will be explained in the rest of the article.

Reading System Call Parameters

By calling ptrace with PTRACE_PEEKUSER as the first argument, we can examine the contents of the USER area where register contents and other information is stored. The kernel stores the contents of registers in this area for the parent process to examine through ptrace.

Let's show this with an example:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>   /* For SYS_write etc */
int main()
{   pid_t child;
    long orig_eax, eax;
    long params[3];
    int status;
    int insyscall = 0;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
       while(1) {
          wait(&status);
          if(WIFEXITED(status))
              break;
          orig_eax = ptrace(PTRACE_PEEKUSER, 
                     child, 4 * ORIG_EAX, NULL);
          if(orig_eax == SYS_write) {
             if(insyscall == 0) {    
                /* Syscall entry */
                insyscall = 1;
                params[0] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * EBX, 
                                   NULL);
                params[1] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * ECX, 
                                   NULL);
                params[2] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * EDX, 
                                   NULL);
                printf("Write called with "
                       "%ld, %ld, %ld\n",
                       params[0], params[1],
                       params[2]);
                }
          else { /* Syscall exit */
                eax = ptrace(PTRACE_PEEKUSER, 
                             child, 4 * EAX, NULL);
                    printf("Write returned "
                           "with %ld\n", eax);
                    insyscall = 0;
                }
            }
            ptrace(PTRACE_SYSCALL, 
                   child, NULL, NULL);
        }
    }
    return 0;
}

This program should print an output similar to the following:

ppadala@linux:~/ptrace > ls
a.out        dummy.s      ptrace.txt   
libgpm.html  registers.c  syscallparams.c
dummy        ptrace.html  simple.c
ppadala@linux:~/ptrace > ./a.out
Write called with 1, 1075154944, 48
a.out        dummy.s      ptrace.txt
Write returned with 48
Write called with 1, 1075154944, 59
libgpm.html  registers.c  syscallparams.c
Write returned with 59
Write called with 1, 1075154944, 30
dummy        ptrace.html  simple.c
Write returned with 30
Here we are tracing the write system calls, and ls makes three write system calls. The call to ptrace, with a first argument of PTRACE_SYSCALL, makes the kernel stop the child process whenever a system call entry or exit is made. It's equivalent to doing a PTRACE_CONT and stopping at the next system call entry/exit.

In the previous example, we used PTRACE_PEEKUSER to look into the arguments of the write system call. When a system call returns, the return value is placed in %eax, and it can be read as shown in that example.

The status variable in the wait call is used to check whether the child has exited. This is the typical way to check whether the child has been stopped by ptrace or was able to exit. For more details on macros like WIFEXITED, see the wait(2) man page.

Reading Register Values

If you want to read register values at the time of a syscall entry or exit, the procedure shown above can be cumbersome. Calling ptrace with a first argument of PTRACE_GETREGS will place all the registers in a single call.

The code to fetch register values looks like this:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>
int main()
{   pid_t child;
    long orig_eax, eax;
    long params[3];
    int status;
    int insyscall = 0;
    struct user_regs_struct regs;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
       while(1) {
          wait(&status);
          if(WIFEXITED(status))
              break;
          orig_eax = ptrace(PTRACE_PEEKUSER, 
                            child, 4 * ORIG_EAX, 
                            NULL);
          if(orig_eax == SYS_write) {
              if(insyscall == 0) {
                 /* Syscall entry */
                 insyscall = 1;
                 ptrace(PTRACE_GETREGS, child, 
                        NULL, &regs);
                 printf("Write called with "
                        "%ld, %ld, %ld\n",
                        regs.ebx, regs.ecx, 
                        regs.edx);
             }
             else { /* Syscall exit */
                 eax = ptrace(PTRACE_PEEKUSER, 
                              child, 4 * EAX, 
                              NULL);
                 printf("Write returned "
                        "with %ld\n", eax);
                 insyscall = 0;
             }
          }
          ptrace(PTRACE_SYSCALL, child,
                 NULL, NULL);
       }
   }
   return 0;
}

This code is similar to the previous example except for the call to ptrace with PTRACE_GETREGS. Here we have made use of the user_regs_struct defined in <linux/user.h> to read the register values.

Doing Funny Things

Now it's time for some fun. In the following example, we will reverse the string passed to the write system call:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>
const int long_size = sizeof(long);
void reverse(char *str)
{   int i, j;
    char temp;
    for(i = 0, j = strlen(str) - 2; 
        i <= j; ++i, --j) {
        temp = str[i];
        str[i] = str[j];
        str[j] = temp;
    }
}
void getdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        data.val = ptrace(PTRACE_PEEKDATA, 
                          child, addr + i * 4, 
                          NULL);
        memcpy(laddr, data.chars, long_size);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        data.val = ptrace(PTRACE_PEEKDATA, 
                          child, addr + i * 4, 
                          NULL);
        memcpy(laddr, data.chars, j);
    }
    str[len] = '\0';
}
void putdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        memcpy(data.chars, laddr, long_size);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        memcpy(data.chars, laddr, j);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
    }
}
int main()
{   
   pid_t child;
   child = fork();
   if(child == 0) {
      ptrace(PTRACE_TRACEME, 0, NULL, NULL);
      execl("/bin/ls", "ls", NULL);
   }
   else {
      long orig_eax;
      long params[3];
      int status;
      char *str, *laddr;
      int toggle = 0;
      while(1) {
         wait(&status);
         if(WIFEXITED(status))
             break;
         orig_eax = ptrace(PTRACE_PEEKUSER, 
                           child, 4 * ORIG_EAX, 
                           NULL);
         if(orig_eax == SYS_write) {
            if(toggle == 0) {
               toggle = 1;
               params[0] = ptrace(PTRACE_PEEKUSER, 
                                  child, 4 * EBX, 
                                  NULL);
               params[1] = ptrace(PTRACE_PEEKUSER, 
                                  child, 4 * ECX, 
                                  NULL);
               params[2] = ptrace(PTRACE_PEEKUSER,
                                  child, 4 * EDX, 
                                  NULL);
               str = (char *)calloc((params[2]+1)
                                 * sizeof(char));
               getdata(child, params[1], str, 
                       params[2]);
               reverse(str);
               putdata(child, params[1], str, 
                       params[2]);
            }
            else {
               toggle = 0;
            }
         }
      ptrace(PTRACE_SYSCALL, child, NULL, NULL);
      }
   }
   return 0;
}

The output looks like this:

ppadala@linux:~/ptrace > ls
a.out        dummy.s      ptrace.txt
libgpm.html  registers.c  syscallparams.c
dummy        ptrace.html  simple.c
ppadala@linux:~/ptrace > ./a.out
txt.ecartp      s.ymmud      tuo.a
c.sretsiger     lmth.mpgbil  c.llacys_egnahc
c.elpmis        lmth.ecartp  ymmud
This example makes use of all the concepts previously discussed, plus a few more. In it, we use calls to ptrace with PTRACE_POKEDATA to change the data values. It works exactly the same way as PTRACE_PEEKDATA, except it both reads and writes the data thatt the child passes in arguments to the system call whereas PEEKDATA only reads the data.

Single-Stepping

ptrace provides features to single-step through the child's code. The call to ptrace(PTRACE_SINGLESTEP,..) tells the kernel to stop the child at each instruction and let the parent take control. The following example shows a way of reading the instruction being executed when a system call is executed. I have created a small dummy executable for you to understand what is happening instead of bothering with the calls made by libc.

Here's the listing for dummy1.s. It's written in assembly language and compiled as gcc -o dummy1 dummy1.s:

.data
hello:
    .string "hello world\n"
.globl  main
main:
    movl    $4, %eax
    movl    $2, %ebx
    movl    $hello, %ecx
    movl    $12, %edx
    int     $0x80
    movl    $1, %eax
    xorl    %ebx, %ebx
    int     $0x80
    ret

The example program that single-steps through the above code is:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h> 
#include <sys/syscall.h>
int main()
{   pid_t child;
    const int long_size = sizeof(long);
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("./dummy1", "dummy1", NULL);
    }
    else {
        int status;
        union u {
            long val;
            char chars[long_size];
        }data;
        struct user_regs_struct regs;
        int start = 0;
        long ins;
        while(1) {
            wait(&status);
            if(WIFEXITED(status))
                break;
            ptrace(PTRACE_GETREGS, 
                   child, NULL, &regs);
            if(start == 1) {
                ins = ptrace(PTRACE_PEEKTEXT, 
                             child, regs.eip, 
                             NULL);
                printf("EIP: %lx Instruction "
                       "executed: %lx\n", 
                       regs.eip, ins);
            }
            if(regs.orig_eax == SYS_write) {
                start = 1;
                ptrace(PTRACE_SINGLESTEP, child, 
                       NULL, NULL);
            }
            else
                ptrace(PTRACE_SYSCALL, child, 
                       NULL, NULL);
        }
    }
    return 0;
}
This program prints:
hello world
EIP: 8049478 Instruction executed: 80cddb31
EIP: 804947c Instruction executed: c3
You might have to look at Intel's manuals to make sense out of those instruction bytes. Using single stepping for more complex processes, such as setting breakpoints, requires careful design and more complex code.

In Part II, we will see how breakpoints can be inserted and code can be injected into a running program.

posted on 2006-10-10 14:48 JeromeWen 閱讀(666) 評論(1)  編輯 收藏 引用 所屬分類: C++

評論

# re: Playing with ptrace, Part I  回復  更多評論   

so good! 3ks
2008-08-15 17:16 | Greentime
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久激情久久| 亚洲国产精品va在看黑人| 久久综合狠狠| 欧美剧在线免费观看网站| 国产精品一级二级三级| 在线精品国精品国产尤物884a| 亚洲视频在线观看网站| 欧美成人精品在线| 午夜精品视频一区| 国产精品婷婷| 性高湖久久久久久久久| 日韩一二在线观看| 欧美日韩精品一区二区三区四区 | 久久精品国产视频| 亚洲高清影视| 亚洲视频电影图片偷拍一区| 免费看av成人| 欧美午夜视频一区二区| 这里只有视频精品| 亚洲精品欧美专区| 欧美视频导航| 亚洲国产导航| 99riav1国产精品视频| 欧美午夜在线观看| 久久久久久久综合| 乱中年女人伦av一区二区| 日韩亚洲精品电影| 亚洲视频一区| 激情视频一区二区三区| 亚洲国产高潮在线观看| 欧美视频手机在线| 久久久www成人免费精品| 免费成人美女女| 久久99在线观看| 久久久久久久久岛国免费| 亚洲欧美日韩国产综合精品二区| 欧美视频精品在线观看| 久久久综合免费视频| 欧美精品在线一区二区三区| 久久亚洲风情| 欧美系列电影免费观看| 亚洲免费成人av| 亚洲国产成人在线播放| 亚洲欧美国产三级| 99热免费精品| 国产精品国产成人国产三级| 欧美高清在线| 亚洲欧洲日韩在线| 久久久亚洲国产天美传媒修理工 | 日韩视频精品在线| 麻豆精品精华液| 欧美一区二区私人影院日本| 欧美日韩亚洲激情| 99视频一区二区| 亚洲尤物视频在线| 欧美视频一区在线观看| 日韩亚洲视频在线| 亚洲视频网在线直播| 欧美日韩精品久久久| 亚洲精品网站在线播放gif| 欧美日本亚洲韩国国产| 亚洲国产精品福利| 一区二区三区视频观看| 欧美裸体一区二区三区| 亚洲欧美文学| 樱桃国产成人精品视频| 免费一级欧美片在线播放| 亚洲国产精品电影在线观看| 一区二区欧美在线观看| 国产欧美日韩在线观看| 亚洲一区一卡| 欧美插天视频在线播放| 一区二区三区精品视频在线观看| 欧美午夜电影一区| 久久美女性网| 一区二区三区视频观看| 久久全球大尺度高清视频| 亚洲国产综合在线| 国产精品免费小视频| 欧美一区二区啪啪| 亚洲欧美日韩在线综合| 一本一本a久久| 亚洲综合精品自拍| 亚洲午夜在线视频| 亚洲一区二区三区免费观看 | 欧美精品一区二区精品网| 亚洲一二三区在线观看| 亚洲视频中文字幕| 久久久久在线| 亚洲免费视频在线观看| 一区二区三区国产精品| 国产精品萝li| 欧美在线观看视频| 久久激情视频| 午夜精品免费在线| 久久国产精品高清| 免播放器亚洲一区| 国产精品乱看| 亚洲线精品一区二区三区八戒| 日韩性生活视频| 午夜精品免费| 亚洲午夜性刺激影院| 亚洲欧美春色| 99精品国产99久久久久久福利| 午夜在线一区| 亚洲欧美日韩国产综合| 欧美主播一区二区三区美女 久久精品人| 亚洲一区二区三区乱码aⅴ蜜桃女 亚洲一区二区三区乱码aⅴ | 亚洲一区二区三区在线观看视频 | 久久在线视频在线| 欧美在线视频观看| 噜噜噜91成人网| 亚洲精品欧美精品| 欧美手机在线视频| 久久影院亚洲| 国产免费观看久久| 欧美一区二区在线免费观看| 亚洲另类在线视频| 另类天堂视频在线观看| 亚洲欧洲日夜超级视频| 国产欧美三级| 亚洲欧美日韩精品久久久| 一区二区三区日韩欧美| 欧美日韩三级| 久久成人这里只有精品| 亚洲私人黄色宅男| 久久久久久久久久久久久女国产乱| 一区二区三区在线看| 欧美午夜一区二区| 欧美大片第1页| 久久精品中文字幕免费mv| 香蕉久久一区二区不卡无毒影院| 亚洲精品日韩综合观看成人91| 麻豆精品在线播放| 亚洲欧美国产另类| 亚洲美女中文字幕| 欧美成人69av| 亚洲精品日韩在线| 亚洲美女福利视频网站| 久久久www成人免费精品| 亚洲一区二区三区四区在线观看| 亚洲国产成人精品久久| 亚洲国产精品久久精品怡红院| 日韩亚洲视频在线| 欧美一区激情| 欧美高清视频一区二区| 欧美高清在线一区二区| 欧美成人一区二区三区在线观看| 麻豆久久精品| 亚洲激情图片小说视频| 六月婷婷一区| 日韩写真视频在线观看| 久久久欧美一区二区| 一本色道久久综合亚洲精品不 | 欧美日本韩国| 久久国产手机看片| 这里只有精品在线播放| 噜噜爱69成人精品| 久久精品导航| 亚洲欧美国产精品专区久久| 亚洲精品乱码久久久久久日本蜜臀 | 国产一区二区三区在线观看免费| 欧美日韩小视频| 欧美粗暴jizz性欧美20| 久久久视频精品| 久久久久综合网| 欧美中文字幕在线观看| 午夜精品视频在线| 亚洲你懂的在线视频| 一区二区三区免费网站| 亚洲精品中文在线| 亚洲精品国产精品国自产观看浪潮| 久久综合九色| 麻豆9191精品国产| 久热国产精品| 欧美.www| 美女诱惑一区| 免费看av成人| 欧美激情亚洲视频| 亚洲国产一区二区三区青草影视| 免费毛片一区二区三区久久久| 久久资源在线| 欧美福利视频一区| 亚洲国产精品热久久| 亚洲精品国精品久久99热| 999亚洲国产精| 中文av一区特黄| 一区二区欧美日韩| 亚洲一区在线播放| 久久精品国产成人| 免费视频亚洲| 欧美日韩一区二区三区| 国产精品国产三级国产专区53| 国产精品久久久久影院亚瑟| 国产一二三精品| 亚洲高清毛片| 一本色道久久88综合日韩精品| 亚洲视频久久| 欧美在线观看天堂一区二区三区| 久久综合伊人77777|