锘??xml version="1.0" encoding="utf-8" standalone="yes"?>伊人成人在线视频,亚洲制服av,一区在线电影http://m.shnenglu.com/jeromewen/category/2711.html鍔姏涓?/description>zh-cnTue, 20 Apr 2010 05:17:03 GMTTue, 20 Apr 2010 05:17:03 GMT60LibTiff 緙栬瘧榪囩▼http://m.shnenglu.com/jeromewen/archive/2010/04/13/112511.htmlJeromeWenJeromeWenTue, 13 Apr 2010 14:30:00 GMThttp://m.shnenglu.com/jeromewen/archive/2010/04/13/112511.htmlhttp://m.shnenglu.com/jeromewen/comments/112511.htmlhttp://m.shnenglu.com/jeromewen/archive/2010/04/13/112511.html#Feedback0http://m.shnenglu.com/jeromewen/comments/commentRss/112511.htmlhttp://m.shnenglu.com/jeromewen/services/trackbacks/112511.html寰堟剰澶栫殑鍘熷洜瑕佺敤鍒?LibTiff 榪欓噷灝嗙紪璇戣繃紼嬭褰曚笅鏉ュ蹇樸?br>http://www.remotesensing.org/libtiff/
http://dl.maptools.org/dl/libtiff/

tiff-3.8.0
鎻愮ず鎵句笉鍒?jpeg.h zlib.h

libtiff/tiffconf.h.vc

42:#undef JPEG_SUPPORT
61:#undef PIXARLOG_SUPPORT
67:#undef ZIP_SUPPORT

libtiff/Makefile.vc
56:# tif_jpeg.obj \
64:# tif_pixarlog.obj \
76:# tif_zip.obj \

tif_codec.obj : error LNK2001: 鏃犳硶瑙f瀽鐨勫閮ㄧ鍙?_TIFFInitPixarLog
tif_codec.obj : error LNK2001: 鏃犳硶瑙f瀽鐨勫閮ㄧ鍙?_TIFFInitZIP
tif_codec.obj : error LNK2001: 鏃犳硶瑙f瀽鐨勫閮ㄧ鍙?_TIFFInitJPEG


libtiff/tif_codec.c
86://    { "JPEG",  COMPRESSION_JPEG, TIFFInitJPEG },
93://    { "Deflate", COMPRESSION_DEFLATE, TIFFInitZIP },
94://    { "AdobeDeflate",   COMPRESSION_ADOBE_DEFLATE , TIFFInitZIP },
95://    { "PixarLog", COMPRESSION_PIXARLOG, TIFFInitPixarLog },



JeromeWen 2010-04-13 22:30 鍙戣〃璇勮
]]>
Playing with ptrace, Part IIhttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13516.htmlJeromeWenJeromeWenTue, 10 Oct 2006 07:59:00 GMThttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13516.htmlhttp://m.shnenglu.com/jeromewen/comments/13516.htmlhttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13516.html#Feedback0http://m.shnenglu.com/jeromewen/comments/commentRss/13516.htmlhttp://m.shnenglu.com/jeromewen/services/trackbacks/13516.html

SysAdmin

In Part II of his series on ptrace, Pradeep tackles the more advanced topics of setting breakpoints and injecting code into running processes.

In Part I of this article [LJ, November 2002], we saw how ptrace can be used to trace system calls and change system call arguments. In this article, we investigate advanced techniques like setting breakpoints and injecting code into running programs. Debuggers use these methods to set up breakpoints and execute debugging handlers. As with Part I, all code in this article is i386 architecture-specific.

Attaching to a Running Process

In Part I, we ran the process to be traced as a child after calling ptrace(PTRACE_TRACEME, ..). If you simply wanted to see how the process is making system calls and trace the program, this would be sufficient. If you want to trace or debug a process already running, then ptrace(PTRACE_ATTACH, ..) should be used.

When a ptrace(PTRACE_ATTACH, ..) is called with the pid to be traced, it is roughly equivalent to the process calling ptrace(PTRACE_TRACEME, ..) and becoming a child of the tracing process. The traced process is sent a SIGSTOP, so we can examine and modify the process as usual. After we are done with modifications or tracing, we can let the traced process continue on its own by calling ptrace(PTRACE_DETACH, ..).

The following is the code for a small example tracing program:

int main()
{   int i;
    for(i = 0;i < 10; ++i) {
        printf("My counter: %d\n", i);
        sleep(2);
    }
    return 0;
}

Save the program as dummy2.c. Compile and run it:

gcc -o dummy2 dummy2.c
./dummy2 &
Now, we can attach to dummy2 by using the code below:
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>   /* For user_regs_struct 
                             etc. */
int main(int argc, char *argv[])
{   pid_t traced_process;
    struct user_regs_struct regs;
    long ins;
    if(argc != 2) {
        printf("Usage: %s <pid to be traced>\n",
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process, 
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process, 
           NULL, &regs);
    ins = ptrace(PTRACE_PEEKTEXT, traced_process, 
                 regs.eip, NULL);
    printf("EIP: %lx Instruction executed: %lx\n", 
           regs.eip, ins);
    ptrace(PTRACE_DETACH, traced_process, 
           NULL, NULL);
    return 0;
}
The above program simply attaches to a process, waits for it to stop, examines its eip (instruction pointer) and detaches.

To inject code use ptrace(PTRACE_POKETEXT, ..) and ptrace(PTRACE_POKEDATA, ..) after the traced process has stopped.

Setting Breakpoints

How do debuggers set breakpoints? Generally, they replace the instruction to be executed with a trap instruction, so that when the traced program stops, the tracing program, the debugger, can examine it. It will replace the original instruction once the tracing program continues the traced process. Here's an example:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
const int long_size = sizeof(long);
void getdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        data.val = ptrace(PTRACE_PEEKDATA, child, 
                          addr + i * 4, NULL);
        memcpy(laddr, data.chars, long_size);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        data.val = ptrace(PTRACE_PEEKDATA, child, 
                          addr + i * 4, NULL);
        memcpy(laddr, data.chars, j);
    }
    str[len] = '\0';
}
void putdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        memcpy(data.chars, laddr, long_size);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        memcpy(data.chars, laddr, j);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
    }
}
int main(int argc, char *argv[])
{   pid_t traced_process;
    struct user_regs_struct regs, newregs;
    long ins;
    /* int 0x80, int3 */
    char code[] = {0xcd,0x80,0xcc,0};
    char backup[4];
    if(argc != 2) {
        printf("Usage: %s <pid to be traced>\n", 
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process, 
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process, 
           NULL, &regs);
    /* Copy instructions into a backup variable */
    getdata(traced_process, regs.eip, backup, 3);
    /* Put the breakpoint */
    putdata(traced_process, regs.eip, code, 3);
    /* Let the process continue and execute 
       the int 3 instruction */
    ptrace(PTRACE_CONT, traced_process, NULL, NULL);
    wait(NULL);
    printf("The process stopped, putting back "
           "the original instructions\n");
    printf("Press <enter> to continue\n");
    getchar();
    putdata(traced_process, regs.eip, backup, 3);
    /* Setting the eip back to the original 
       instruction to let the process continue */
    ptrace(PTRACE_SETREGS, traced_process, 
           NULL, &regs);
    ptrace(PTRACE_DETACH, traced_process, 
           NULL, NULL);
    return 0;
}

Here we replace the three bytes with the code for a trap instruction, and when the process stops, we replace the original instructions and reset the eip to original location. Figures 1-4 clarify how the instruction stream looks when above program is executed.

Now that we have a clear idea of how breakpoints are set, let's inject some code bytes into a running program. These code bytes will print ``hello world''.

The following program is a simple ``hello world'' program with modifications to fit our needs. Compile the following program with:

gcc -o hello hello.c
void main()
{
__asm__("
         jmp forward
backward:
         popl   %esi      # Get the address of 
                          # hello world string
         movl   $4, %eax  # Do write system call
         movl   $2, %ebx
         movl   %esi, %ecx
         movl   $12, %edx
         int    $0x80
         int3             # Breakpoint. Here the 
                          # program will stop and 
                          # give control back to 
                          # the parent
forward:
         call   backward
         .string \"Hello World\\n\""
       );
}

The jumping backward and forward here is required to find the address of the ``hello world'' string.

We can get the machine code for the above assembly from GDB. Fire up GDB and disassemble the program:

(gdb) disassemble main
Dump of assembler code for function main:
0x80483e0 <main>:       push   %ebp
0x80483e1 <main+1>:     mov    %esp,%ebp
0x80483e3 <main+3>:     jmp    0x80483fa <forward>
End of assembler dump.
(gdb) disassemble forward
Dump of assembler code for function forward:
0x80483fa <forward>:    call   0x80483e5 <backward>
0x80483ff <forward+5>:  dec    %eax
0x8048400 <forward+6>:  gs
0x8048401 <forward+7>:  insb   (%dx),%es:(%edi)
0x8048402 <forward+8>:  insb   (%dx),%es:(%edi)
0x8048403 <forward+9>:  outsl  %ds:(%esi),(%dx)
0x8048404 <forward+10>: and    %dl,0x6f(%edi)
0x8048407 <forward+13>: jb     0x8048475
0x8048409 <forward+15>: or     %fs:(%eax),%al
0x804840c <forward+18>: mov    %ebp,%esp
0x804840e <forward+20>: pop    %ebp
0x804840f <forward+21>: ret
End of assembler dump.
(gdb) disassemble backward
Dump of assembler code for function backward:
0x80483e5 <backward>:   pop    %esi
0x80483e6 <backward+1>: mov    $0x4,%eax
0x80483eb <backward+6>: mov    $0x2,%ebx
0x80483f0 <backward+11>:        mov    %esi,%ecx
0x80483f2 <backward+13>:        mov    $0xc,%edx
0x80483f7 <backward+18>:        int    $0x80
0x80483f9 <backward+20>:        int3
End of assembler dump.

We need to take the machine code bytes from main+3 to backward+20, which is a total of 41 bytes. The machine code can be seen with the x command in GDB:

(gdb) x/40bx main+3
<main+3>: eb 15 5e b8 04 00 00 00
<backward+6>: bb 02 00 00 00 89 f1 ba
<backward+14>: 0c 00 00 00 cd 80 cc
<forward+1>: e6 ff ff ff 48 65 6c 6c
<forward+9>: 6f 20 57 6f 72 6c 64 0a

Now we have the instruction bytes to be executed. Why wait? We can inject them using the same method as in the previous example. The following is the source code; only the main function is given here:

int main(int argc, char *argv[])
{   pid_t traced_process;
    struct user_regs_struct regs, newregs;
    long ins;
    int len = 41;
    char insertcode[] =
"\xeb\x15\x5e\xb8\x04\x00"
        "\x00\x00\xbb\x02\x00\x00\x00\x89\xf1\xba"
        "\x0c\x00\x00\x00\xcd\x80\xcc\xe8\xe6\xff"
        "\xff\xff\x48\x65\x6c\x6c\x6f\x20\x57\x6f"
        "\x72\x6c\x64\x0a\x00";
    char backup[len];
    if(argc != 2) {
        printf("Usage: %s <pid to be traced>\n", 
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process, 
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process, 
           NULL, &regs);
    getdata(traced_process, regs.eip, backup, len);
    putdata(traced_process, regs.eip, 
            insertcode, len);
    ptrace(PTRACE_SETREGS, traced_process, 
           NULL, &regs);
    ptrace(PTRACE_CONT, traced_process, 
           NULL, NULL);
    wait(NULL);
    printf("The process stopped, Putting back "
           "the original instructions\n");
    putdata(traced_process, regs.eip, backup, len);
    ptrace(PTRACE_SETREGS, traced_process, 
           NULL, &regs);
    printf("Letting it continue with "
           "original flow\n");
    ptrace(PTRACE_DETACH, traced_process,
           NULL, NULL);
    return 0;
}



Injecting the Code into Free Space

In the previous example we injected the code directly into the executing instruction stream. However, debuggers can get confused with this kind of behaviour, so let's find the free space in the process and inject the code there. We can find free space by examining the /proc/pid/maps file of the traced process. The following function will find the starting address of this map:

long freespaceaddr(pid_t pid)
{
    FILE *fp;
    char filename[30];
    char line[85];
    long addr;
    char str[20];
    sprintf(filename, "/proc/%d/maps", pid);
    fp = fopen(filename, "r");
    if(fp == NULL)
        exit(1);
    while(fgets(line, 85, fp) != NULL) {
        sscanf(line, "%lx-%*lx %*s %*s %s", &addr, 
               str, str, str, str);
        if(strcmp(str, "00:00") == 0)
            break;
    }
    fclose(fp);
    return addr;
}

Each line in /proc/pid/maps represents a mapped region of the process. An entry in /proc/pid/maps looks like this:

map start-mapend    protection  offset     device   
inode      process file
08048000-0804d000   r-xp        00000000   03:08    
66111      /opt/kde2/bin/kdeinit
The following program injects code into free space. It's similar to the previous injection program except the free space address is used for keeping our new code. Here is the source code for the main function:
int main(int argc, char *argv[])
{   pid_t traced_process;
    struct user_regs_struct oldregs, regs;
    long ins;
    int len = 41;
    char insertcode[] =
"\xeb\x15\x5e\xb8\x04\x00"
        "\x00\x00\xbb\x02\x00\x00\x00\x89\xf1\xba"
        "\x0c\x00\x00\x00\xcd\x80\xcc\xe8\xe6\xff"
        "\xff\xff\x48\x65\x6c\x6c\x6f\x20\x57\x6f"
        "\x72\x6c\x64\x0a\x00";
    char backup[len];
    long addr;
    if(argc != 2) {
        printf("Usage: %s <pid to be traced>\n", 
               argv[0], argv[1]);
        exit(1);
    }
    traced_process = atoi(argv[1]);
    ptrace(PTRACE_ATTACH, traced_process, 
           NULL, NULL);
    wait(NULL);
    ptrace(PTRACE_GETREGS, traced_process, 
           NULL, &regs);
    addr = freespaceaddr(traced_process);
    getdata(traced_process, addr, backup, len);
    putdata(traced_process, addr, insertcode, len);
    memcpy(&oldregs, &regs, sizeof(regs));
    regs.eip = addr;
    ptrace(PTRACE_SETREGS, traced_process, 
           NULL, &regs);
    ptrace(PTRACE_CONT, traced_process, 
           NULL, NULL);
    wait(NULL);
    printf("The process stopped, Putting back "
           "the original instructions\n");
    putdata(traced_process, addr, backup, len);
    ptrace(PTRACE_SETREGS, traced_process, 
           NULL, &oldregs);
    printf("Letting it continue with "
           "original flow\n");
    ptrace(PTRACE_DETACH, traced_process, 
           NULL, NULL);
    return 0;
}


Behind the Scenes

So what happens within the kernel now? How is ptrace implemented? This section could be an article on its own; however, here's a brief description of what happens.

When a process calls ptrace with PTRACE_TRACEME, the kernel sets up the process flags to reflect that it is being traced:

Source: arch/i386/kernel/ptrace.c
if (request == PTRACE_TRACEME) {
    /* are we already being traced? */
    if (current->ptrace & PT_PTRACED)
        goto out;
    /* set the ptrace bit in the process flags. */
    current->ptrace |= PT_PTRACED;
    ret = 0;
    goto out;
}

When a system call entry is done, the kernel checks this flag and calls the trace system call if the process is being traced. The gory assembly details can be found in arch/i386/kernel/entry.S.

Now, we are in the sys_trace() function as defined in arch/i386/kernel/ptrace.c. It stops the child and sends a signal to the parent notifying that the child is stopped. This wakes up the waiting parent, and it does the ptrace magic. Once the parent is done, and it calls ptrace(PTRACE_CONT, ..) or ptrace(PTRACE_SYSCALL, ..), it wakes up the child by calling the scheduler function wake_up_process(). Some other architectures can implement this by sending a SIGCHLD to child.

Conclusion

ptrace may appear to be magic to some people, because it can examine and modify a running program. It is generally used by debuggers and system call tracing programs, such as ptrace. It opens up interesting possibilities for doing user-mode extensions as well. There have been a lot of attempts to extend the operating system on the user level. See Resources to read about UFO, a user-level extension to filesystems. ptrace also is used to employ security mechanisms.

All example code from this article and from Part I is available as a tar archive on the Linux Journal FTP site [ftp.ssc.com/pub/lj/listings/issue104/6210.tgz].



JeromeWen 2006-10-10 15:59 鍙戣〃璇勮
]]>
Playing with ptrace, Part Ihttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13514.htmlJeromeWenJeromeWenTue, 10 Oct 2006 06:48:00 GMThttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13514.htmlhttp://m.shnenglu.com/jeromewen/comments/13514.htmlhttp://m.shnenglu.com/jeromewen/archive/2006/10/10/13514.html#Feedback1http://m.shnenglu.com/jeromewen/comments/commentRss/13514.htmlhttp://m.shnenglu.com/jeromewen/services/trackbacks/13514.html鏉ヨ嚜http://www.linuxjournal.com/article/6100
SysAdmin

Using ptrace allows you to set up system call interception and modification at the user level.

Have you ever wondered how system calls can be intercepted? Have you ever tried fooling the kernel by changing system call arguments? Have you ever wondered how debuggers stop a running process and let you take control of the process?

If you are thinking of using complex kernel programming to accomplish tasks, think again. Linux provides an elegant mechanism to achieve all of these things: the ptrace (Process Trace) system call. ptrace provides a mechanism by which a parent process may observe and control the execution of another process. It can examine and change its core image and registers and is used primarily to implement breakpoint debugging and system call tracing.

In this article, we learn how to intercept a system call and change its arguments. In Part II of the article we will study advanced techniques--setting breakpoints and injecting code into a running program. We will peek into the child process' registers and data segment and modify the contents. We will also describe a way to inject code so the process can be stopped and execute arbitrary instructions.

Basics

Operating systems offer services through a standard mechanism called system calls. They provide a standard API for accessing the underlying hardware and low-level services, such as the filesystems. When a process wants to invoke a system call, it puts the arguments to system calls in registers and calls soft interrupt 0x80. This soft interrupt is like a gate to the kernel mode, and the kernel will execute the system call after examining the arguments.

On the i386 architecture (all the code in this article is i386-specific), the system call number is put in the register %eax. The arguments to this system call are put into registers %ebx, %ecx, %edx, %esi and %edi, in that order. For example, the call:

write(2, "Hello", 5)

roughly would translate into

movl   $4, %eax
movl   $2, %ebx
movl   $hello,%ecx
movl   $5, %edx
int    $0x80
where $hello points to a literal string "Hello".

So where does ptrace come into picture? Before executing the system call, the kernel checks whether the process is being traced. If it is, the kernel stops the process and gives control to the tracking process so it can examine and modify the traced process' registers.

Let's clarify this explanation with an example of how the process works:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>   /* For constants 
                                   ORIG_EAX etc */
int main()
{   pid_t child;
    long orig_eax;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
        wait(NULL);
        orig_eax = ptrace(PTRACE_PEEKUSER, 
                          child, 4 * ORIG_EAX, 
                          NULL);
        printf("The child made a "
               "system call %ld\n", orig_eax);
        ptrace(PTRACE_CONT, child, NULL, NULL);
    }
    return 0;
}

When run, this program prints:

The child made a system call 11
along with the output of ls. System call number 11 is execve, and it's the first system call executed by the child. For reference, system call numbers can be found in /usr/include/asm/unistd.h.

As you can see in the example, a process forks a child and the child executes the process we want to trace. Before running exec, the child calls ptrace with the first argument, equal to PTRACE_TRACEME. This tells the kernel that the process is being traced, and when the child executes the execve system call, it hands over control to its parent. The parent waits for notification from the kernel with a wait() call. Then the parent can check the arguments of the system call or do other things, such as looking into the registers.

When the system call occurs, the kernel saves the original contents of the eax register, which contains the system call number. We can read this value from child's USER segment by calling ptrace with the first argument PTRACE_PEEKUSER, shown as above.

After we are done examining the system call, the child can continue with a call to ptrace with the first argument PTRACE_CONT, which lets the system call continue.

ptrace Parameters

ptrace is called with four arguments:

long ptrace(enum __ptrace_request request,
            pid_t pid,
            void *addr,
            void *data);

The first argument determines the behaviour of ptrace and how other arguments are used. The value of request should be one of PTRACE_TRACEME, PTRACE_PEEKTEXT, PTRACE_PEEKDATA, PTRACE_PEEKUSER, PTRACE_POKETEXT, PTRACE_POKEDATA, PTRACE_POKEUSER, PTRACE_GETREGS, PTRACE_GETFPREGS, PTRACE_SETREGS, PTRACE_SETFPREGS, PTRACE_CONT, PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_DETACH. The significance of each of these requests will be explained in the rest of the article.

Reading System Call Parameters

By calling ptrace with PTRACE_PEEKUSER as the first argument, we can examine the contents of the USER area where register contents and other information is stored. The kernel stores the contents of registers in this area for the parent process to examine through ptrace.

Let's show this with an example:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>   /* For SYS_write etc */
int main()
{   pid_t child;
    long orig_eax, eax;
    long params[3];
    int status;
    int insyscall = 0;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
       while(1) {
          wait(&status);
          if(WIFEXITED(status))
              break;
          orig_eax = ptrace(PTRACE_PEEKUSER, 
                     child, 4 * ORIG_EAX, NULL);
          if(orig_eax == SYS_write) {
             if(insyscall == 0) {    
                /* Syscall entry */
                insyscall = 1;
                params[0] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * EBX, 
                                   NULL);
                params[1] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * ECX, 
                                   NULL);
                params[2] = ptrace(PTRACE_PEEKUSER,
                                   child, 4 * EDX, 
                                   NULL);
                printf("Write called with "
                       "%ld, %ld, %ld\n",
                       params[0], params[1],
                       params[2]);
                }
          else { /* Syscall exit */
                eax = ptrace(PTRACE_PEEKUSER, 
                             child, 4 * EAX, NULL);
                    printf("Write returned "
                           "with %ld\n", eax);
                    insyscall = 0;
                }
            }
            ptrace(PTRACE_SYSCALL, 
                   child, NULL, NULL);
        }
    }
    return 0;
}

This program should print an output similar to the following:

ppadala@linux:~/ptrace > ls
a.out        dummy.s      ptrace.txt   
libgpm.html  registers.c  syscallparams.c
dummy        ptrace.html  simple.c
ppadala@linux:~/ptrace > ./a.out
Write called with 1, 1075154944, 48
a.out        dummy.s      ptrace.txt
Write returned with 48
Write called with 1, 1075154944, 59
libgpm.html  registers.c  syscallparams.c
Write returned with 59
Write called with 1, 1075154944, 30
dummy        ptrace.html  simple.c
Write returned with 30
Here we are tracing the write system calls, and ls makes three write system calls. The call to ptrace, with a first argument of PTRACE_SYSCALL, makes the kernel stop the child process whenever a system call entry or exit is made. It's equivalent to doing a PTRACE_CONT and stopping at the next system call entry/exit.

In the previous example, we used PTRACE_PEEKUSER to look into the arguments of the write system call. When a system call returns, the return value is placed in %eax, and it can be read as shown in that example.

The status variable in the wait call is used to check whether the child has exited. This is the typical way to check whether the child has been stopped by ptrace or was able to exit. For more details on macros like WIFEXITED, see the wait(2) man page.

Reading Register Values

If you want to read register values at the time of a syscall entry or exit, the procedure shown above can be cumbersome. Calling ptrace with a first argument of PTRACE_GETREGS will place all the registers in a single call.

The code to fetch register values looks like this:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>
int main()
{   pid_t child;
    long orig_eax, eax;
    long params[3];
    int status;
    int insyscall = 0;
    struct user_regs_struct regs;
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("/bin/ls", "ls", NULL);
    }
    else {
       while(1) {
          wait(&status);
          if(WIFEXITED(status))
              break;
          orig_eax = ptrace(PTRACE_PEEKUSER, 
                            child, 4 * ORIG_EAX, 
                            NULL);
          if(orig_eax == SYS_write) {
              if(insyscall == 0) {
                 /* Syscall entry */
                 insyscall = 1;
                 ptrace(PTRACE_GETREGS, child, 
                        NULL, &regs);
                 printf("Write called with "
                        "%ld, %ld, %ld\n",
                        regs.ebx, regs.ecx, 
                        regs.edx);
             }
             else { /* Syscall exit */
                 eax = ptrace(PTRACE_PEEKUSER, 
                              child, 4 * EAX, 
                              NULL);
                 printf("Write returned "
                        "with %ld\n", eax);
                 insyscall = 0;
             }
          }
          ptrace(PTRACE_SYSCALL, child,
                 NULL, NULL);
       }
   }
   return 0;
}

This code is similar to the previous example except for the call to ptrace with PTRACE_GETREGS. Here we have made use of the user_regs_struct defined in <linux/user.h> to read the register values.

Doing Funny Things

Now it's time for some fun. In the following example, we will reverse the string passed to the write system call:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>
const int long_size = sizeof(long);
void reverse(char *str)
{   int i, j;
    char temp;
    for(i = 0, j = strlen(str) - 2; 
        i <= j; ++i, --j) {
        temp = str[i];
        str[i] = str[j];
        str[j] = temp;
    }
}
void getdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        data.val = ptrace(PTRACE_PEEKDATA, 
                          child, addr + i * 4, 
                          NULL);
        memcpy(laddr, data.chars, long_size);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        data.val = ptrace(PTRACE_PEEKDATA, 
                          child, addr + i * 4, 
                          NULL);
        memcpy(laddr, data.chars, j);
    }
    str[len] = '\0';
}
void putdata(pid_t child, long addr, 
             char *str, int len)
{   char *laddr;
    int i, j;
    union u {
            long val;
            char chars[long_size];
    }data;
    i = 0;
    j = len / long_size;
    laddr = str;
    while(i < j) {
        memcpy(data.chars, laddr, long_size);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
        ++i;
        laddr += long_size;
    }
    j = len % long_size;
    if(j != 0) {
        memcpy(data.chars, laddr, j);
        ptrace(PTRACE_POKEDATA, child, 
               addr + i * 4, data.val);
    }
}
int main()
{   
   pid_t child;
   child = fork();
   if(child == 0) {
      ptrace(PTRACE_TRACEME, 0, NULL, NULL);
      execl("/bin/ls", "ls", NULL);
   }
   else {
      long orig_eax;
      long params[3];
      int status;
      char *str, *laddr;
      int toggle = 0;
      while(1) {
         wait(&status);
         if(WIFEXITED(status))
             break;
         orig_eax = ptrace(PTRACE_PEEKUSER, 
                           child, 4 * ORIG_EAX, 
                           NULL);
         if(orig_eax == SYS_write) {
            if(toggle == 0) {
               toggle = 1;
               params[0] = ptrace(PTRACE_PEEKUSER, 
                                  child, 4 * EBX, 
                                  NULL);
               params[1] = ptrace(PTRACE_PEEKUSER, 
                                  child, 4 * ECX, 
                                  NULL);
               params[2] = ptrace(PTRACE_PEEKUSER,
                                  child, 4 * EDX, 
                                  NULL);
               str = (char *)calloc((params[2]+1)
                                 * sizeof(char));
               getdata(child, params[1], str, 
                       params[2]);
               reverse(str);
               putdata(child, params[1], str, 
                       params[2]);
            }
            else {
               toggle = 0;
            }
         }
      ptrace(PTRACE_SYSCALL, child, NULL, NULL);
      }
   }
   return 0;
}

The output looks like this:

ppadala@linux:~/ptrace > ls
a.out        dummy.s      ptrace.txt
libgpm.html  registers.c  syscallparams.c
dummy        ptrace.html  simple.c
ppadala@linux:~/ptrace > ./a.out
txt.ecartp      s.ymmud      tuo.a
c.sretsiger     lmth.mpgbil  c.llacys_egnahc
c.elpmis        lmth.ecartp  ymmud
This example makes use of all the concepts previously discussed, plus a few more. In it, we use calls to ptrace with PTRACE_POKEDATA to change the data values. It works exactly the same way as PTRACE_PEEKDATA, except it both reads and writes the data thatt the child passes in arguments to the system call whereas PEEKDATA only reads the data.

Single-Stepping

ptrace provides features to single-step through the child's code. The call to ptrace(PTRACE_SINGLESTEP,..) tells the kernel to stop the child at each instruction and let the parent take control. The following example shows a way of reading the instruction being executed when a system call is executed. I have created a small dummy executable for you to understand what is happening instead of bothering with the calls made by libc.

Here's the listing for dummy1.s. It's written in assembly language and compiled as gcc -o dummy1 dummy1.s:

.data
hello:
    .string "hello world\n"
.globl  main
main:
    movl    $4, %eax
    movl    $2, %ebx
    movl    $hello, %ecx
    movl    $12, %edx
    int     $0x80
    movl    $1, %eax
    xorl    %ebx, %ebx
    int     $0x80
    ret

The example program that single-steps through the above code is:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h> 
#include <sys/syscall.h>
int main()
{   pid_t child;
    const int long_size = sizeof(long);
    child = fork();
    if(child == 0) {
        ptrace(PTRACE_TRACEME, 0, NULL, NULL);
        execl("./dummy1", "dummy1", NULL);
    }
    else {
        int status;
        union u {
            long val;
            char chars[long_size];
        }data;
        struct user_regs_struct regs;
        int start = 0;
        long ins;
        while(1) {
            wait(&status);
            if(WIFEXITED(status))
                break;
            ptrace(PTRACE_GETREGS, 
                   child, NULL, &regs);
            if(start == 1) {
                ins = ptrace(PTRACE_PEEKTEXT, 
                             child, regs.eip, 
                             NULL);
                printf("EIP: %lx Instruction "
                       "executed: %lx\n", 
                       regs.eip, ins);
            }
            if(regs.orig_eax == SYS_write) {
                start = 1;
                ptrace(PTRACE_SINGLESTEP, child, 
                       NULL, NULL);
            }
            else
                ptrace(PTRACE_SYSCALL, child, 
                       NULL, NULL);
        }
    }
    return 0;
}
This program prints:
hello world
EIP: 8049478 Instruction executed: 80cddb31
EIP: 804947c Instruction executed: c3
You might have to look at Intel's manuals to make sense out of those instruction bytes. Using single stepping for more complex processes, such as setting breakpoints, requires careful design and more complex code.

In Part II, we will see how breakpoints can be inserted and code can be injected into a running program.



JeromeWen 2006-10-10 14:48 鍙戣〃璇勮
]]>
POP(110)鐩戞帶http://m.shnenglu.com/jeromewen/archive/2006/09/29/13141.htmlJeromeWenJeromeWenFri, 29 Sep 2006 05:07:00 GMThttp://m.shnenglu.com/jeromewen/archive/2006/09/29/13141.htmlhttp://m.shnenglu.com/jeromewen/comments/13141.htmlhttp://m.shnenglu.com/jeromewen/archive/2006/09/29/13141.html#Feedback9http://m.shnenglu.com/jeromewen/comments/commentRss/13141.htmlhttp://m.shnenglu.com/jeromewen/services/trackbacks/13141.html#include "nids.h"
#include <cstdio>
#pragma comment(lib,"ws2_32")
#pragma comment(lib,"wpcap")
#pragma comment(lib,"libnids")
char ascii_string[10000];
char * char_to_ascii(char ch)
{
聽char * string;
聽ascii_string[0] = 0;
聽string = ascii_string;
聽if(isgraph(ch))
聽{
聽聽*string++ =ch;
聽}
聽else if (ch == '\n' || ch == '\r')
聽{
聽聽*string++ =ch;
聽}
聽else
聽{
聽聽*string++ = '.';
聽}
聽*string聽 = 0;
聽return ascii_string;
}

void pop3_protocol_callback(struct tcp_stream* pop3_connection, void **arg)
{
聽int i;
聽char address_string[1024];
聽char content[65535];
聽char content_urgent[65535];
聽struct tuple4 ip_and_port = pop3_connection->addr;
聽strcpy(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.saddr))));
聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.source);
聽strcat(address_string, " <----> ");
聽strcat(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.daddr))));
聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.dest);
聽strcat(address_string,"\n");
聽switch (pop3_connection->nids_state)
聽{
聽case NIDS_JUST_EST:
聽聽if(pop3_connection->addr.dest == 110)
聽聽{
聽聽pop3_connection->client.collect++;
聽聽pop3_connection->client.collect_urg++;
聽聽pop3_connection->server.collect++;
聽聽pop3_connection->server.collect_urg++;
聽聽printf("%sPOP3瀹㈡埛绔拰鏈嶅姟绔緩绔嬭繛鎺n", address_string);
聽聽}
聽聽return;
聽case NIDS_CLOSE:
聽聽printf("---------------------------------------\n");
聽聽printf("%sPOP3瀹㈡埛绔拰鏈嶅姟绔甯稿叧闂璡n", address_string);
聽聽return;
聽case NIDS_RESET:
聽聽printf("---------------------------------------\n");
聽聽printf("%sPOP3瀹㈡埛绔拰鏈嶅姟绔RST鍏抽棴\n", address_string);
聽聽return;
聽case NIDS_DATA:
聽聽{
聽聽聽char status_code[5];
聽聽聽struct half_stream* hlf;
聽聽聽if(pop3_connection->server.count_new_urg)
聽聽聽{
聽聽聽聽printf("----------------------------------------\n");
聽聽聽聽strcpy(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.saddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.source);
聽聽聽聽strcat(address_string, " urgent----> ");
聽聽聽聽strcat(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.daddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.dest);
聽聽聽聽strcat(address_string,"\n");
聽聽聽聽address_string[strlen(address_string)+1] = 0;
聽聽聽聽address_string[strlen(address_string)] = pop3_connection->server.urgdata;
聽聽聽聽printf("%s",address_string);
聽聽聽聽return;
聽聽聽}
聽聽聽if (pop3_connection->client.count_new_urg)
聽聽聽{
聽聽聽聽printf("----------------------------------------\n");
聽聽聽聽strcpy(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.saddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.source);
聽聽聽聽strcat(address_string, " <------urgent");
聽聽聽聽strcat(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.daddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.dest);
聽聽聽聽strcat(address_string,"\n");
聽聽聽聽address_string[strlen(address_string)+1] = 0;
聽聽聽聽address_string[strlen(address_string)] = pop3_connection->server.urgdata;
聽聽聽聽printf("%s",address_string);
聽聽聽聽return;
聽聽聽}
聽聽聽if (pop3_connection->client.count_new)
聽聽聽{
聽聽聽聽hlf = &pop3_connection->client;
聽聽聽聽strcpy(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.saddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.source);
聽聽聽聽strcat(address_string, " <-----");
聽聽聽聽strcat(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.daddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.dest);
聽聽聽聽strcat(address_string,"\n");
聽聽聽聽printf("----------------------------------------\n");
聽聽聽聽printf("%s",address_string);
聽聽聽聽memcpy(content, hlf->data, hlf->count_new);
聽聽聽聽content[hlf->count_new] = '\0';
聽聽聽聽if (strstr(strncpy(status_code,content,4),"+OK"))
聽聽聽聽聽printf("鎿嶄綔鎴愬姛\n");
聽聽聽聽if (strstr(strncpy(status_code,content,4),"-ERR"))
聽聽聽聽聽printf("鎿嶄綔澶辮觸\n");
聽聽聽聽for(i = 0;i<hlf->count_new;i++)
聽聽聽聽{
聽聽聽聽聽printf("%s",char_to_ascii(content[i]));
聽聽聽聽}
聽聽聽聽printf("\n");
聽聽聽聽if (strstr(content,"\n\r.\n\r"))
聽聽聽聽聽printf("鏁版嵁浼犺緭緇撴潫\n");
聽聽聽}
聽聽聽else
聽聽聽{
聽聽聽聽hlf = &pop3_connection->server;
聽聽聽聽strcpy(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.saddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.source);
聽聽聽聽strcat(address_string, " <-----");
聽聽聽聽strcat(address_string, inet_ntoa(*((struct in_addr*)&(ip_and_port.daddr))));
聽聽聽聽sprintf(address_string+strlen(address_string),": %i",ip_and_port.dest);
聽聽聽聽strcat(address_string,"\n");
聽聽聽聽printf("----------------------------------------\n");
聽聽聽聽printf("%s",address_string);
聽聽聽聽memcpy(content, hlf->data, hlf->count_new);
聽聽聽聽content[hlf->count_new] = '\0';
聽聽聽聽if(strstr(content, "USER"))
聽聽聽聽聽printf("閭歡鐢ㄦ埛鍚嶄負\n");
聽聽聽聽if(strstr(content, "PASS"))
聽聽聽聽聽printf("鐢ㄦ埛瀵嗙爜涓篭n");
聽聽聽聽if(strstr(content, "STAT"))
聽聽聽聽聽printf("榪斿洖緇熻璧勬枡\n");
聽聽聽聽if(strstr(content, "LIST"))
聽聽聽聽聽printf("榪斿洖閭歡鏁伴噺鍜屽ぇ灝廫n");
聽聽聽聽if(strstr(content, "RETR"))
聽聽聽聽聽printf("鑾峰彇閭歡\n");
聽聽聽聽if(strstr(content, "DELE"))
聽聽聽聽聽printf("鍒犻櫎閭歡\n");
聽聽聽聽if(strstr(content, "QUIT"))
聽聽聽聽聽printf("閫鍑鴻繛鎺n");

聽聽聽聽for(i = 0;i<hlf->count_new;i++)
聽聽聽聽{
聽聽聽聽聽printf("%s",char_to_ascii(content[i]));
聽聽聽聽}
聽聽聽聽printf("\n");
聽聽聽}
聽聽}
聽default:
聽聽break;
聽}
聽return ;
}
int main(int argc, char **argv)
{
聽if(!nids_init())
聽{
聽聽printf("鍑虹幇閿欒: %s\n", nids_errbuf);
聽聽exit(1);
聽}

聽nids_register_tcp(pop3_protocol_callback);
聽nids_run();
聽return 0;
}



JeromeWen 2006-09-29 13:07 鍙戣〃璇勮
]]>
Nids.h璇︾粏娉ㄩ噴 http://m.shnenglu.com/jeromewen/archive/2006/09/29/13138.htmlJeromeWenJeromeWenFri, 29 Sep 2006 04:31:00 GMThttp://m.shnenglu.com/jeromewen/archive/2006/09/29/13138.htmlhttp://m.shnenglu.com/jeromewen/comments/13138.htmlhttp://m.shnenglu.com/jeromewen/archive/2006/09/29/13138.html#Feedback3http://m.shnenglu.com/jeromewen/comments/commentRss/13138.htmlhttp://m.shnenglu.com/jeromewen/services/trackbacks/13138.html闃呰鍏ㄦ枃

JeromeWen 2006-09-29 12:31 鍙戣〃璇勮
]]>
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美影院成人| 国产欧美日韩在线播放| 欧美1区视频| 亚洲午夜激情网页| 亚洲欧洲在线播放| 亚洲人成人77777线观看| 国产一区三区三区| 国内自拍一区| 亚洲日本成人| 亚洲精品影院| 亚洲一区二区在线看| 亚洲深夜福利视频| 久久国产精品99精品国产| 久久精品国产99| 免费欧美电影| 99ri日韩精品视频| 亚洲主播在线观看| 黄色国产精品| 亚洲国产综合91精品麻豆| 亚洲综合国产| 久久综合婷婷| 亚洲调教视频在线观看| 欧美中文在线字幕| 欧美日韩国产不卡在线看| 亚洲国产老妈| 欧美激情一区二区三区蜜桃视频| 欧美成人午夜剧场免费观看| 一本久道久久综合中文字幕| 欧美尤物一区| 国产精品大片wwwwww| 亚洲成人在线| 日韩一级成人av| 麻豆成人91精品二区三区| 9国产精品视频| 欧美a级片一区| 91久久精品国产| 欧美成人午夜激情| 久久久亚洲欧洲日产国码αv| 国产精品久久久对白| 亚洲尤物在线视频观看| 亚洲精品久久视频| 欧美日韩精品不卡| 中文在线资源观看网站视频免费不卡 | 亚洲欧美国产视频| 亚洲看片免费| 国产精品日韩欧美大师| 亚洲欧美国产制服动漫| 国产精品99久久久久久久vr| 国产精品女主播一区二区三区| 亚洲欧美韩国| 蜜桃久久精品乱码一区二区| 9久re热视频在线精品| 99精品免费| aⅴ色国产欧美| 欧美午夜精品久久久久久超碰| 亚洲中无吗在线| 久久亚洲免费| 性做久久久久久| 久久综合网hezyo| 久久九九热re6这里有精品| 久久精品视频免费观看| 91久久中文字幕| 亚洲欧美国产高清va在线播| 亚洲国产欧美日韩精品| 亚洲一区二区高清| 亚洲精品视频二区| 香蕉久久一区二区不卡无毒影院 | 国产手机视频精品| 欧美激情国产精品| 国内精品久久久久久久影视蜜臀| 亚洲片在线资源| 永久免费视频成人| 欧美一区午夜精品| 午夜精品久久久久久久久| 欧美成年人在线观看| 卡一卡二国产精品| 狠狠色狠狠色综合日日91app| 中文av一区二区| 在线一区视频| 国产精品国码视频| 亚洲视频一区二区免费在线观看| 最新国产精品拍自在线播放| 久久夜色精品国产| 亚洲国产成人午夜在线一区| 亚洲国产精品999| 欧美大秀在线观看| 国产欧美一区二区三区在线老狼 | 亚洲在线视频观看| 正在播放欧美一区| 国产精品www.| 久久九九99视频| 亚洲人在线视频| 欧美亚洲视频| 亚洲日本在线观看| 国产精品播放| 美玉足脚交一区二区三区图片| 亚洲国产一区在线观看| 亚洲一区免费| 亚洲精品一区二区网址| 国产精品视频一区二区三区| 久久久国产视频91| 在线视频精品| 亚洲视频专区在线| 亚洲一区亚洲二区| 欧美国产精品中文字幕| 亚洲综合999| 亚洲高清视频在线观看| 国产精品99一区二区| 欧美福利小视频| 久久久久青草大香线综合精品| 一本大道av伊人久久综合| 欧美成年人网| 噜噜噜躁狠狠躁狠狠精品视频| 亚洲午夜av电影| 一本久久a久久精品亚洲| 亚洲国产精品毛片| 91久久精品国产91久久| 亚洲激情视频网| 日韩亚洲精品视频| 亚洲美女黄网| 亚洲精品一区在线| 亚洲区在线播放| 99在线精品观看| 午夜精品一区二区三区在线视| 亚洲免费视频观看| 久久成人精品电影| 浪潮色综合久久天堂| 久久久久国产精品一区二区| 久久精品国产999大香线蕉| 久久久久久久网站| 免费观看欧美在线视频的网站| 欧美成人免费全部观看天天性色| 欧美精品v日韩精品v韩国精品v | 亚洲一区二区三区四区五区黄| 午夜伦欧美伦电影理论片| 久久亚洲影院| 国产精品久久国产精品99gif| 国产一二三精品| 一个色综合av| 麻豆91精品| 午夜精品视频网站| 欧美高清在线| 黄色日韩在线| 亚洲欧美美女| 亚洲乱码视频| 欧美精品18videos性欧美| 国产综合精品| 久久香蕉国产线看观看av| 亚洲国产精品久久久| 久久精品国产99国产精品| 国产精品二区三区四区| 日韩一区二区免费高清| 亚洲电影激情视频网站| 久久精品国产综合精品| 国产精品自在在线| 亚洲永久精品国产| 9久re热视频在线精品| 欧美日韩在线大尺度| 一区二区精品在线| 亚洲欧美激情精品一区二区| 欧美精品一区二| 国产在线视频欧美| 久久久久成人精品| 久久福利资源站| 伊人天天综合| 亚洲第一福利社区| 欧美欧美天天天天操| 正在播放欧美一区| 欧美一区二区成人| 亚洲精品久久久久| 亚洲小视频在线| 在线观看欧美黄色| 亚洲毛片在线观看| 激情久久一区| 亚洲午夜女主播在线直播| 狠狠色丁香久久婷婷综合丁香| 欧美寡妇偷汉性猛交| 国产精品一区二区视频| 亚洲福利在线看| 国产一区二区你懂的| 亚洲免费福利视频| 91久久精品国产91性色tv| 亚洲一区二区视频| aa亚洲婷婷| 欧美黑人在线播放| 免费观看在线综合色| 国产免费观看久久黄| 一区二区三区欧美激情| 亚洲精品欧美在线| 欧美成人精品h版在线观看| 久热国产精品| 国产日韩三区| 欧美一区二区视频97| 久久国产乱子精品免费女| 国产精品视频| 亚洲欧美日韩国产| 久久狠狠亚洲综合| 狠狠色丁香久久婷婷综合丁香| 午夜宅男欧美| 麻豆av福利av久久av|