• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            EverSpring working shop

            To pursue creative ideas based on nature.

            統計

            留言簿(1)

            他山之石

            閱讀排行榜

            評論排行榜

            TOC for Introduction to Algorithms

            Table of Contents
            Preface
            I Foundations
            1 The Role of Algorithms in Computing
            1.1 Algorithms 
            1.2 Algorithms as a technology
            2 Getting Started 
            2.1 Insertion sort 
            2.2 Analyzing algorithms 
            2.3 Designing Algorithms 
            3 Growth of Functions
            3.1 Asymptotic notation
            3.2 Standard notations and common functions
            4 Recurrences
            4.1 The substitution method 
            4.2 The recursion-tree method 
            4.3 The master method 
            4.4 Proof of the master theorem
            5 Probabilistic Analysis and Randomized Algorithms
            5.1 The hiring problem 
            5.2 Indicator random variables 
            5.3 Randomized algorithms 
            5.4 Probabilistic analysis and further uses of indicator random variables
            II Sorting and Order Statistics
            6 Heapsort
            6.1 Heaps
            6.2 Maintaining the heap property 
            6.3 Building a heap 
            6.4 The heapsort algorithm
            6.5 Priority queues
            7 Quicksort
            7.1 Description of quicksort
            7.2 Performance of quicksort 
            7.3 Randomized versions of quicksort
            7.4 Analysis of quicksort
            8 Sorting in Linear Time
            8.1 Lower bounds for sorting 
            8.2 Counting sort 
            8.3 Radix sort 
            8.4 Bucket sort
            9 Medians and Order Statistics
            9.1 Minimum and maximum
            9.2 Selection in expected linear time 
            9.3 Selection in worst-case linear time
            III Data Structures
            10 Elementary Data Structures
            10.1 Stacks and queues 
            10.2 Linked lists
            10.3 Implementing pointers and objects 
            10.4 Representing rooted trees
            11 Hash Tables
            11.1 Direct-address tables 
            11.2 Hash tables 
            11.3 Hash functions 
            11.4 Open addressing 
            11.5 Perfect hashing
            12 Binary Search Trees
            12.1 What is a binary search tree? 
            12.2 Querying a binary search tree 
            12.3 Insertion and deletion 
            12.4 Randomly built binary search trees
            13 Red-Black Trees
            13.1 Properties of red-black trees 
            13.2 Rotations
            13.3 Insertion 
            13.4 Deletion
            14 Augmenting Data Structures
            14.1 Dynamic order statistics 
            14.2 How to augment a data structure 
            14.3 Interval trees
            IV Advanced Design and Analysis Technique
            15 Dynamic Programming
            15.1 Assembly-line scheduling 
            15.2 Matrix-chain multiplication 
            15.3 Elements of dynamic programming 
            15.4 Longest common subsequence 
            15.5 Optimal binary search trees
            16 Greedy Algorithms
            16.1 An activity-selection problem 
            16.2 Elements of the greedy strategy 
            16.3 Huffman codes 
            16.4 Theoretical foundations for greedy methods 
            16.5 A task-scheduling problem
            17 Amortized Analysis
            17.1 Aggregate analysis 
            17.2 The accounting method 
            17.3 The potential method 
            17.4 Dynamic tables
            V Advanced Data Structures
            18 B-Trees 
            18.1 Definition of B-trees 
            18.2 Basic operations on B-trees 
            18.3 Deleting a key from a B-tree
            19 Binomial Heaps 
            19.1 Binomial trees and binomial heaps 
            19.2 Operations on binomial heaps
            20 Fibonacci Heaps 
            20.1 Structure of Fibonacci heaps 
            20.2 Mergeable-heap operations 
            20.3 Decreasing a key and deleting a node 
            20.4 Bounding the maximum degree
            21 Data Structures for Disjoint Sets 
            21.1 Disjoint-set operations 
            21.2 Linked-list representation of disjoint sets 
            21.3 Disjoint-set forests 
            21.4 Analysis of union by rank with path compression
            VI Graph Algorithms
            22 Elementary Graph Algorithms 
            22.1 Representations of graphs 
            22.2 Breadth-first search 
            22.3 Depth-first search 
            22.4 Topological sort 
            22.5 Strongly connected components
            23 Minimum Spanning Trees 
            23.1 Growing a minimum spanning tree 
            23.2 The algorithms of Kruskal and Prim
            24 Single-Source Shortest Paths 
            24.1 The Bellman-Ford algorithm 
            24.2 Single-source shortest paths in directed acyclic graphs 
            24.3 Dijkstra's algorithm 
            24.4 Difference constraints and shortest paths 
            24.5 Proofs of shortest-paths properties
            25 All-Pairs Shortest Paths 
            25.1 Shortest paths and matrix multiplication 
            25.2 The Floyd-Warshall algorithm 
            25.3 Johnson's algorithm for sparse graphs
            26 Maximum Flow 
            26.1 Flow networks 
            26.2 The Ford-Fulkerson method 
            26.3 Maximum bipartite matching 
            26.4 Push-relabel algorithms 
            26.5 The relabel-to-front algorithm
            VII Selected Topics
            27 Sorting Networks 
            27.1 Comparison networks 
            27.2 The zero-one principle 
            27.3 A bitonic sorting network 
            27.4 A merging network 
            27.5 A sorting network
            28 Matrix Operations 
            28.1 Properties of matrices 
            28.2 Strassen's algorithm for matrix multiplication 
            28.3 Solving systems of linear equations 
            28.4 Inverting matrices 
            28.5 Symmetric positive-definite matrices and least-squares approximation
            29 Linear Programming 
            29.1 Standard and slack forms 
            29.2 Formulating problems as linear programs 
            29.3 The simplex algorithm 
            29.4 Duality 
            29.5 The initial basic feasible solution
            30 Polynomials and the FFT
            30.1 Representation of polynomials 
            30.2 The DFT and FFT 
            30.3 Efficient FFT implementations
            31 Number-Theoretic Algorithms
            31.1 Elementary number-theoretic notions 
            31.2 Greatest common divisor 
            31.3 Modular arithmetic 
            31.4 Solving modular linear equations 
            31.5 The Chinese remainder theorem 
            31.6 Powers of an element 
            31.7 The RSA public-key cryptosystem 
            31.8 Primality testing 
            31.9 Integer factorization
            32 String Matching 
            32.1 The naive string-matching algorithm 
            32.2 The Rabin-Karp algorithm 
            32.3 String matching with finite automata 
            32.4 The Knuth-Morris-Pratt algorithm
            33 Computational Geometry 
            33.1 Line-segment properties 
            33.2 Determining whether any pair of segments intersects 
            33.3 Finding the convex hull 
            33.4 Finding the closest pair of points
            34 NP-Completeness 
            34.1 Polynomial time 
            34.2 Polynomial-time verification 
            34.3 NP-completeness and reducibility 
            34.4 NP-completeness proofs 
            34.5 NP-complete problems
            35 Approximation Algorithms 
            35.1 The vertex-cover problem 
            35.2 The traveling-salesman problem 
            35.3 The set-covering problem 
            35.4 Randomization and linear programming 
            35.4 The subset-sum problem
            VIII Appendix: Mathematical Background
            A Summations
            A.1 Summation formulas and properties 
            A.2 Bounding summations
            B Sets, Etc.
            B.1 Sets 
            B.2 Relations
            B.3 Functions 
            B.4 Graphs 
            B.5 Trees
            C Counting and Probability 
            C.1 Counting 
            C.2 Probability 
            C.3 Discrete random variables 
            C.4 The geometric and binomial distributions 
            C.5 The tails of the binomial distribution
            Bibliography 
            Index (created by the authors)

            posted on 2011-06-02 14:32 everspring79 閱讀(337) 評論(0)  編輯 收藏 引用 所屬分類: Notes轉載

            久久99国产精品久久久| 欧美伊人久久大香线蕉综合69 | 久久久久亚洲av综合波多野结衣| 四虎影视久久久免费| 亚洲国产精品久久久天堂| 99久久精品国产免看国产一区| 国产精品成人久久久久三级午夜电影| 欧美日韩成人精品久久久免费看| 国产成人久久精品一区二区三区 | 婷婷久久久亚洲欧洲日产国码AV| 久久99国产综合精品| 久久精品综合网| 国产精品久久久久久一区二区三区| 亚洲国产精品狼友中文久久久| 99久久99久久久精品齐齐 | 久久国产色AV免费观看| 伊人久久大香线蕉综合网站| 国产ww久久久久久久久久| 久久中文骚妇内射| 亚洲日本va午夜中文字幕久久| 久久精品国产半推半就| 久久人人爽人人爽人人AV东京热| 亚洲国产婷婷香蕉久久久久久| 9191精品国产免费久久| 好久久免费视频高清| 国产精品久久久久久久久免费| 久久精品一本到99热免费| 午夜精品久久久久久中宇| 无码日韩人妻精品久久蜜桃| 热久久最新网站获取| 国产精品久久久久久久久软件| 中文字幕无码久久人妻| 亚洲欧美精品一区久久中文字幕| 无码8090精品久久一区| 久久国产AVJUST麻豆| 人妻无码αv中文字幕久久琪琪布 人妻无码精品久久亚瑟影视 | 中文精品久久久久人妻| 一本色道久久88精品综合 | 精品亚洲综合久久中文字幕| 国产精品一久久香蕉国产线看观看| 久久久久久久亚洲Av无码|