• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            EverSpring working shop

            To pursue creative ideas based on nature.

            統(tǒng)計

            留言簿(1)

            他山之石

            閱讀排行榜

            評論排行榜

            TOC for Introduction to Algorithms

            Table of Contents
            Preface
            I Foundations
            1 The Role of Algorithms in Computing
            1.1 Algorithms 
            1.2 Algorithms as a technology
            2 Getting Started 
            2.1 Insertion sort 
            2.2 Analyzing algorithms 
            2.3 Designing Algorithms 
            3 Growth of Functions
            3.1 Asymptotic notation
            3.2 Standard notations and common functions
            4 Recurrences
            4.1 The substitution method 
            4.2 The recursion-tree method 
            4.3 The master method 
            4.4 Proof of the master theorem
            5 Probabilistic Analysis and Randomized Algorithms
            5.1 The hiring problem 
            5.2 Indicator random variables 
            5.3 Randomized algorithms 
            5.4 Probabilistic analysis and further uses of indicator random variables
            II Sorting and Order Statistics
            6 Heapsort
            6.1 Heaps
            6.2 Maintaining the heap property 
            6.3 Building a heap 
            6.4 The heapsort algorithm
            6.5 Priority queues
            7 Quicksort
            7.1 Description of quicksort
            7.2 Performance of quicksort 
            7.3 Randomized versions of quicksort
            7.4 Analysis of quicksort
            8 Sorting in Linear Time
            8.1 Lower bounds for sorting 
            8.2 Counting sort 
            8.3 Radix sort 
            8.4 Bucket sort
            9 Medians and Order Statistics
            9.1 Minimum and maximum
            9.2 Selection in expected linear time 
            9.3 Selection in worst-case linear time
            III Data Structures
            10 Elementary Data Structures
            10.1 Stacks and queues 
            10.2 Linked lists
            10.3 Implementing pointers and objects 
            10.4 Representing rooted trees
            11 Hash Tables
            11.1 Direct-address tables 
            11.2 Hash tables 
            11.3 Hash functions 
            11.4 Open addressing 
            11.5 Perfect hashing
            12 Binary Search Trees
            12.1 What is a binary search tree? 
            12.2 Querying a binary search tree 
            12.3 Insertion and deletion 
            12.4 Randomly built binary search trees
            13 Red-Black Trees
            13.1 Properties of red-black trees 
            13.2 Rotations
            13.3 Insertion 
            13.4 Deletion
            14 Augmenting Data Structures
            14.1 Dynamic order statistics 
            14.2 How to augment a data structure 
            14.3 Interval trees
            IV Advanced Design and Analysis Technique
            15 Dynamic Programming
            15.1 Assembly-line scheduling 
            15.2 Matrix-chain multiplication 
            15.3 Elements of dynamic programming 
            15.4 Longest common subsequence 
            15.5 Optimal binary search trees
            16 Greedy Algorithms
            16.1 An activity-selection problem 
            16.2 Elements of the greedy strategy 
            16.3 Huffman codes 
            16.4 Theoretical foundations for greedy methods 
            16.5 A task-scheduling problem
            17 Amortized Analysis
            17.1 Aggregate analysis 
            17.2 The accounting method 
            17.3 The potential method 
            17.4 Dynamic tables
            V Advanced Data Structures
            18 B-Trees 
            18.1 Definition of B-trees 
            18.2 Basic operations on B-trees 
            18.3 Deleting a key from a B-tree
            19 Binomial Heaps 
            19.1 Binomial trees and binomial heaps 
            19.2 Operations on binomial heaps
            20 Fibonacci Heaps 
            20.1 Structure of Fibonacci heaps 
            20.2 Mergeable-heap operations 
            20.3 Decreasing a key and deleting a node 
            20.4 Bounding the maximum degree
            21 Data Structures for Disjoint Sets 
            21.1 Disjoint-set operations 
            21.2 Linked-list representation of disjoint sets 
            21.3 Disjoint-set forests 
            21.4 Analysis of union by rank with path compression
            VI Graph Algorithms
            22 Elementary Graph Algorithms 
            22.1 Representations of graphs 
            22.2 Breadth-first search 
            22.3 Depth-first search 
            22.4 Topological sort 
            22.5 Strongly connected components
            23 Minimum Spanning Trees 
            23.1 Growing a minimum spanning tree 
            23.2 The algorithms of Kruskal and Prim
            24 Single-Source Shortest Paths 
            24.1 The Bellman-Ford algorithm 
            24.2 Single-source shortest paths in directed acyclic graphs 
            24.3 Dijkstra's algorithm 
            24.4 Difference constraints and shortest paths 
            24.5 Proofs of shortest-paths properties
            25 All-Pairs Shortest Paths 
            25.1 Shortest paths and matrix multiplication 
            25.2 The Floyd-Warshall algorithm 
            25.3 Johnson's algorithm for sparse graphs
            26 Maximum Flow 
            26.1 Flow networks 
            26.2 The Ford-Fulkerson method 
            26.3 Maximum bipartite matching 
            26.4 Push-relabel algorithms 
            26.5 The relabel-to-front algorithm
            VII Selected Topics
            27 Sorting Networks 
            27.1 Comparison networks 
            27.2 The zero-one principle 
            27.3 A bitonic sorting network 
            27.4 A merging network 
            27.5 A sorting network
            28 Matrix Operations 
            28.1 Properties of matrices 
            28.2 Strassen's algorithm for matrix multiplication 
            28.3 Solving systems of linear equations 
            28.4 Inverting matrices 
            28.5 Symmetric positive-definite matrices and least-squares approximation
            29 Linear Programming 
            29.1 Standard and slack forms 
            29.2 Formulating problems as linear programs 
            29.3 The simplex algorithm 
            29.4 Duality 
            29.5 The initial basic feasible solution
            30 Polynomials and the FFT
            30.1 Representation of polynomials 
            30.2 The DFT and FFT 
            30.3 Efficient FFT implementations
            31 Number-Theoretic Algorithms
            31.1 Elementary number-theoretic notions 
            31.2 Greatest common divisor 
            31.3 Modular arithmetic 
            31.4 Solving modular linear equations 
            31.5 The Chinese remainder theorem 
            31.6 Powers of an element 
            31.7 The RSA public-key cryptosystem 
            31.8 Primality testing 
            31.9 Integer factorization
            32 String Matching 
            32.1 The naive string-matching algorithm 
            32.2 The Rabin-Karp algorithm 
            32.3 String matching with finite automata 
            32.4 The Knuth-Morris-Pratt algorithm
            33 Computational Geometry 
            33.1 Line-segment properties 
            33.2 Determining whether any pair of segments intersects 
            33.3 Finding the convex hull 
            33.4 Finding the closest pair of points
            34 NP-Completeness 
            34.1 Polynomial time 
            34.2 Polynomial-time verification 
            34.3 NP-completeness and reducibility 
            34.4 NP-completeness proofs 
            34.5 NP-complete problems
            35 Approximation Algorithms 
            35.1 The vertex-cover problem 
            35.2 The traveling-salesman problem 
            35.3 The set-covering problem 
            35.4 Randomization and linear programming 
            35.4 The subset-sum problem
            VIII Appendix: Mathematical Background
            A Summations
            A.1 Summation formulas and properties 
            A.2 Bounding summations
            B Sets, Etc.
            B.1 Sets 
            B.2 Relations
            B.3 Functions 
            B.4 Graphs 
            B.5 Trees
            C Counting and Probability 
            C.1 Counting 
            C.2 Probability 
            C.3 Discrete random variables 
            C.4 The geometric and binomial distributions 
            C.5 The tails of the binomial distribution
            Bibliography 
            Index (created by the authors)

            posted on 2011-06-02 14:32 everspring79 閱讀(337) 評論(0)  編輯 收藏 引用 所屬分類: Notes轉載

            久久久久亚洲AV无码专区网站| 亚洲精品高清国产一线久久| 国产成人精品免费久久久久| 97热久久免费频精品99| 久久国产乱子精品免费女| 久久综合五月丁香久久激情| 久久精品国产精品亚洲精品| 久久被窝电影亚洲爽爽爽| 亚洲欧美日韩久久精品| 久久美女网站免费| 中文字幕久久波多野结衣av| 亚洲国产精品久久久久婷婷老年 | 一本色道久久综合亚洲精品| 久久亚洲国产精品123区| 久久香综合精品久久伊人| 久久久久久久综合狠狠综合| 久久久久久久波多野结衣高潮| 中文成人无码精品久久久不卡| 久久亚洲欧美国产精品| 亚洲精品乱码久久久久久不卡| 日本免费久久久久久久网站| 99久久国产综合精品女同图片| 久久天天躁狠狠躁夜夜2020老熟妇| 91精品国产9l久久久久| 无码专区久久综合久中文字幕| 无码8090精品久久一区| 久久久久亚洲AV综合波多野结衣| 日本免费一区二区久久人人澡| 97久久精品无码一区二区天美| 午夜精品久久久久久久| 欧美噜噜久久久XXX| 久久久久国产精品熟女影院 | AAA级久久久精品无码区| 色妞色综合久久夜夜| 久久久婷婷五月亚洲97号色 | 国产成人精品综合久久久| 无遮挡粉嫩小泬久久久久久久| 国内精品久久久久| 久久久www免费人成精品| 亚洲国产香蕉人人爽成AV片久久| 国产精品久久久久久吹潮|