• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            C++天空

            cpp_stu2's Land

            re: 對一些DP題目的小結 姜雨生 2007-06-30 22:59
            應該可以更加優化
            re: 對一些DP題目的小結 姜雨生 2007-06-30 22:55
            Margaritas on the River Walk
            Time Limit:1000MS Memory Limit:65536K
            Total Submit:309 Accepted:132

            Description


            One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels to Joe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

            Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

            For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

            Vendor A B C D H J
            Price 8 9 8 7 16 5

            Then possible combinations (with their prices) are:

            ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

            Thus the total number of combinations is 15.


            Input


            The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.


            Output


            For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.


            Sample Input


            2
            6 25
            8 9 8 7 16 5
            30 250
            1 2 3 4 5 6 7 8 9 10 11
            12 13 14 15 16 17 18 19 20
            21 22 23 24 25 26 27 28 29 30

            Sample Output


            1 15
            2 16509438

            Hint


            Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.


            Source
            Greater New York 2006
            急需 我也要樓主 幫我傳一份吧
            郵箱:cpp_student@163.com
            謝謝!!!
            re: 狀態壓縮DP, pku3020 姜雨生 2007-06-30 10:35
            真是太好了
            以后多向你請教
            算你狠
            我USACO全過了
            你還在做A+B!
            re: 凸包... 姜雨生 2007-06-30 10:26
            #include<fstream>
            #include<cstdlib>
            using namespace std;
            ifstream fin ("bag.in");
            ofstream fout ("bag.out");
            struct xys
            {
            int x;
            int y;
            };
            int N;//數目
            xys xy[101];//坐標系
            int top;//堆棧頂
            int stk[101];//堆棧
            void swap(xys *a,xys *b)
            {
            xys tmp = *a;
            *a = *b;
            *b =tmp;
            }
            int multi(xys a,xys b,xys c)
            {
            return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);//求叉積
            }
            bool comp(xys p1,xys p2)
            {
            int t;
            t=multi(p1,p2,xy[0]);
            if ((t>=0)&&((p1.x-xy[0].x)+(p1.y-xy[0].y)<(p2.x-xy[0].x)+(p2.y-xy[0].y)))
            return true;//叉積正確
            return false;
            }
            void sort(int p,int r)
            {
            int i,j;
            xys x;
            if (r-p+1<=5)
            {
            for (j=p+1;j<=r;j++)
            {
            i=j;
            while(i>1&&comp(xy[i],xy[i-1]))
            {
            swap(&xy[i],&xy[i-1]);//交換元素
            i--;
            }
            }
            }
            else
            {
            x=xy[p+rand()%(r-p+1)];//隨即選區一個支點
            i=p,j=r;
            do
            {
            while (comp(xy[i],x))i++;
            while (comp(x,xy[j]))j--;
            if (i<j)swap(&xy[i],&xy[j]);
            }//一次規劃
            while (i<j);
            sort(p,j);//前半部
            sort(p+1,r);//后半部
            }
            }
            void init()
            {
            int i;
            fin>>N;
            for(i=0;i<N;i++){
            fin>>xy[i].x>>xy[i].y;
            if (xy[i].y<=xy[0].y&&xy[i].x<xy[0].y) swap(xy[0],xy[i]);//交換
            }
            sort(1,N-1);
            }
            void graham()
            {
            int i;
            for(i=1;i<=3;i++) stk[i]=i-1;
            top=3;
            for(i=3;i<N;i++)
            {
            while(multi(xy[i],xy[stk[top]],xy[stk[top-1]])>=0) top--;//所有未向左傳的點去掉
            top++;
            stk[top]=i;//入棧
            }
            for (i=1;i<=top;i++)
            fout<<xy[stk[i]].x<<" "<<xy[stk[i]].y<<endl;
            }
            int main (void)
            {
            init();
            graham();//掃描出凸包,打印
            return 0;
            }
            <2007年6月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            導航

            統計

            常用鏈接

            留言簿(1)

            隨筆檔案

            文章檔案

            搜索

            最新評論

            亚洲欧洲日产国码无码久久99| 国产99久久久国产精免费| 午夜精品久久久久久| 最新久久免费视频| 99久久精品国产麻豆| 久久se这里只有精品| 中文字幕人妻色偷偷久久 | A级毛片无码久久精品免费| 国产成年无码久久久免费| 久久91精品国产91久久小草| 久久婷婷五月综合成人D啪| 亚洲国产精品无码成人片久久| 国产91色综合久久免费| 久久久精品久久久久影院| 久久香蕉一级毛片| 久久精品亚洲福利| 久久丫精品国产亚洲av| 亚洲国产精品无码久久久久久曰| 久久久久女人精品毛片| 久久久久久亚洲精品影院| 青青青青久久精品国产h| 人人狠狠综合久久88成人| 人人狠狠综合久久亚洲| 国产精品无码久久综合网| 久久精品九九亚洲精品| 综合久久给合久久狠狠狠97色| 国产成人无码精品久久久久免费| 久久午夜羞羞影院免费观看| 久久午夜免费视频| 亚洲第一永久AV网站久久精品男人的天堂AV | 国产—久久香蕉国产线看观看| 亚洲精品乱码久久久久66| 日产精品久久久久久久| 亚洲国产成人久久综合野外| 久久久久久国产精品美女| 久久www免费人成看国产片| 久久国产亚洲精品麻豆| 久久精品国产一区| 99久久免费国产精品| 国产精品成人久久久久久久| 国产精品免费久久久久久久久|