題目鏈接:
http://acm.hdu.edu.cn/showproblem.php?pid=3682題目大意:給你一個立方體,要求去掉若干個垂直于xy或xz或yz的柱子后,去掉的總立方塊個數。
題解:發揮想象力,模擬。
1.判斷兩兩相交
例子:
設柱子的值為(x,y,z),其中用0表示和該軸平行
柱子A:(x1,y1,0),表示過xy平面的x1,y1點,且垂直于xy平面
柱子B:(0,y2,z2),表示過yz平面的y2,z2點,且垂直于yz平面
如果柱子A和柱子B相交,那么必有:y1 == y2
如A*B中有兩個分量為0,且非0部分兩者相等,則相交,交點為兩者求并(x1,y1==y2,z2)
2.逐個插入
那么,根據給出的柱子數,初始移除塊數為n*m,然后按照數據順序逐個插入
并且判斷有沒有重復,注意每次插入時,判重Hash都是初始的,就是說,以前
出現過交點的,并不會影響下一次的交點判斷
代碼:
#include <stdio.h>
#include <set>
#include <vector>
#include <time.h>
#include <stdlib.h>
using namespace std;

const int N = 1005;
struct Point


{
int x;
int y;
int z;

Point(int _x = 0,int _y = 0,int _z = 0):x(_x),y(_y),z(_z)
{}
};

vector<Point> vecX[N];
vector<Point> vecY[N];
vector<Point> vecZ[N];
set<long long> Set;
int n,m;
int cnts[128];

long long Hash(int x,int y,int z)


{
long long c = (long long)x*10000*10000;
c*= 10;
return c+ (long long)y * 10000 + (long long)z;
}

bool IsCross(Point &_p1,Point& _p2,set<long long>& _Set)


{
int cx = _p1.x * _p2.x;
int cy = _p1.y * _p2.y;
int cz = _p1.z * _p2.z;
if(((cx == 0)&&(cy == 0))||((cx == 0)&&(cz == 0))||((cy == 0)&&(cz == 0)))

{
Point p3;
if((cx != 0)&&(_p2.x == _p1.x))

{
p3.x = _p1.x;
p3.y = _p1.y | _p2.y;
p3.z = _p1.z | _p2.z;
}
else if((cy != 0)&&(_p2.y == _p1.y))

{
p3.x = _p1.x | _p2.x;
p3.y = _p1.y;
p3.z = _p1.z | _p2.z;
}
else if((cz != 0)&&(_p2.z == _p1.z))

{
p3.x = _p1.x | _p2.x;
p3.y = _p1.y | _p2.y;
p3.z = _p1.z;
}
long long hashCode = Hash(p3.x,p3.y,p3.z);
if(_Set.find(hashCode) == _Set.end())

{
_Set.insert(hashCode);
return true;
}
else

{
return false;
}
}
return false;
}

int Insert()


{
Point p1(cnts['X'],cnts['Y'],cnts['Z']);
long long hashCode = Hash(p1.x,p1.y,p1.z);
//判斷出現相同的柱子
if(Set.find(hashCode) != Set.end())
return n;
else
Set.insert(hashCode);
//對于每一次插入,Hash都是初始的
set<long long> tmpSet;
int crossCnt = 0;
if(p1.x != 0)

{
for(int i = 0; i < vecX[p1.x].size(); ++i)

{
if(IsCross(p1,vecX[p1.x][i],tmpSet))
crossCnt++;
}
vecX[p1.x].push_back(p1);
}
if(p1.y != 0)

{
for(int i = 0; i < vecY[p1.y].size(); ++i)

{
if(IsCross(p1,vecY[p1.y][i],tmpSet))
crossCnt++;
}
vecY[p1.y].push_back(p1);
}
if(p1.z != 0)

{
for(int i = 0; i < vecZ[p1.z].size(); ++i)

{
if(IsCross(p1,vecZ[p1.z][i],tmpSet))
crossCnt++;
}
vecZ[p1.z].push_back(p1);
}
return crossCnt;
}

void Test()


{
scanf("%d %d\n",&n,&m);
for(int i = 0; i < N; ++i)

{
vecX[i].clear();
vecY[i].clear();
vecZ[i].clear();
}
Set.clear();
char ch1,ch2;
int d1,d2;
int all = n*m;
for(int i = 0; i < m; ++i)

{
cnts['X'] = cnts['Y'] = cnts['Z'] = 0;
//getchar();
scanf("%c=%d,%c=%d\n",&ch1,&d1,&ch2,&d2);
cnts[ch1] = d1;
cnts[ch2] = d2;
all -= Insert();
}
printf("%d\n",all);
}


int main()


{
int testcase = 0;
scanf("%d",&testcase);
for(int i = 0; i < testcase; ++i)
Test();
return 0;
}
posted on 2010-11-10 17:10
bennycen 閱讀(469)
評論(1) 編輯 收藏 引用 所屬分類:
算法題解