• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks

            #

            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted @ 2016-02-28 21:01 bigrabbit 閱讀(327) | 評論 (0)編輯 收藏

            主要類:
            CCNode

               CCDirector
               CCScene
               CCLayer


            定時更新:

               [[[CCDirector sharedDirector] scheduler] scheduleUpdateForTarget:self priority:0 paused:NO];

               //[[[CCDirector sharedDirector] scheduler] unscheduleUpdateForTarget:self];

            接收輸入:
               v0.99

                  CCStandardTouchDelegate

                  CCTargetedTouchDelegate

               v2.10

                  CCTouchOneByOneDelegate

                  CCTouchAllAtOnceDelegate

               [[[CCDirector sharedDirector] touchDispatcher] addTargetedDelegate:self priority:0 swallowsTouches:YES];

               //[[[CCDirector sharedDirector] touchDispatcher] removeDelegate:self];


            坐標系統:
               position是設置相對于父親節點的坐標
               self.anchorPoint和self.position重合


            多層:
               [cclayer.addchild cclayer];
               一層疊一層

            posted @ 2014-05-15 21:14 bigrabbit 閱讀(270) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-10-24 22:47 bigrabbit 閱讀(521) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-08-02 15:36 bigrabbit 閱讀(972) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-31 22:36 bigrabbit 閱讀(656) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-26 12:14 bigrabbit 閱讀(190) | 評論 (0)編輯 收藏

                 摘要: UVA 10801 Lift Hopping  閱讀全文
            posted @ 2012-07-22 23:43 bigrabbit 閱讀(1152) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-07-13 09:02 bigrabbit 閱讀(1118) | 評論 (0)編輯 收藏

                 摘要:   閱讀全文
            posted @ 2012-04-30 16:30 bigrabbit 閱讀(432) | 評論 (1)編輯 收藏

            今天做了次CF,兩個小時比賽時間。。用一小時水了兩題之后,又用一個小時的龜速想了一個不知道什么玩意的玩意,比賽沒A掉,比賽結束A掉了。為什么要想那么久呢。。。。。。水題也要想那么久。。。。。小細節處理不好。。。。。
            不過話說CF的題目不錯,不像廣大中文OJ的無腦題
            http://codeforces.com/problemset/problem/180/E 
            不貼代碼了。


            posted @ 2012-04-22 17:23 bigrabbit 閱讀(318) | 評論 (0)編輯 收藏

            僅列出標題
            共3頁: 1 2 3 
            欧美黑人激情性久久| 久久精品这里热有精品| 精品久久人人爽天天玩人人妻| 国产精品久久久天天影视| 丁香五月综合久久激情| 一级做a爰片久久毛片毛片| 成人午夜精品无码区久久| 久久久久亚洲av无码专区| 狠色狠色狠狠色综合久久| 久久人搡人人玩人妻精品首页| 久久免费看黄a级毛片| 久久免费小视频| 伊人久久大香线蕉AV色婷婷色 | 麻豆精品久久精品色综合| 日韩精品无码久久一区二区三| 国产成人精品综合久久久久| 亚洲国产精品久久久久婷婷软件| 污污内射久久一区二区欧美日韩| 久久久久人妻精品一区| 国产成人精品综合久久久| 欧美噜噜久久久XXX| 少妇被又大又粗又爽毛片久久黑人| 久久综合精品国产二区无码| 国产精品青草久久久久福利99| 久久香综合精品久久伊人| 久久久久久无码国产精品中文字幕 | 久久夜色精品国产欧美乱| 美女久久久久久| 久久久久亚洲AV成人网| 97久久精品午夜一区二区| 精品久久久久久久无码| 亚洲伊人久久大香线蕉综合图片| 久久国产精品一区| 2021国产成人精品久久| 99久久这里只有精品| avtt天堂网久久精品| 久久婷婷五月综合国产尤物app | 国产精品久久99| 久久综合给合久久狠狠狠97色69| 久久久精品久久久久久 | 久久精品国产久精国产|