• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks

            2016年2月28日 #

            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted @ 2016-02-28 21:01 bigrabbit 閱讀(327) | 評論 (0)編輯 收藏

            2014年5月15日 #

            主要類:
            CCNode

               CCDirector
               CCScene
               CCLayer


            定時更新:

               [[[CCDirector sharedDirector] scheduler] scheduleUpdateForTarget:self priority:0 paused:NO];

               //[[[CCDirector sharedDirector] scheduler] unscheduleUpdateForTarget:self];

            接收輸入:
               v0.99

                  CCStandardTouchDelegate

                  CCTargetedTouchDelegate

               v2.10

                  CCTouchOneByOneDelegate

                  CCTouchAllAtOnceDelegate

               [[[CCDirector sharedDirector] touchDispatcher] addTargetedDelegate:self priority:0 swallowsTouches:YES];

               //[[[CCDirector sharedDirector] touchDispatcher] removeDelegate:self];


            坐標系統:
               position是設置相對于父親節點的坐標
               self.anchorPoint和self.position重合


            多層:
               [cclayer.addchild cclayer];
               一層疊一層

            posted @ 2014-05-15 21:14 bigrabbit 閱讀(270) | 評論 (0)編輯 收藏

            2012年10月24日 #

                 摘要:   閱讀全文
            posted @ 2012-10-24 22:47 bigrabbit 閱讀(521) | 評論 (0)編輯 收藏

            2012年8月2日 #

                 摘要:   閱讀全文
            posted @ 2012-08-02 15:36 bigrabbit 閱讀(972) | 評論 (0)編輯 收藏

            2012年7月31日 #

                 摘要:   閱讀全文
            posted @ 2012-07-31 22:36 bigrabbit 閱讀(656) | 評論 (0)編輯 收藏

            2012年7月26日 #

                 摘要:   閱讀全文
            posted @ 2012-07-26 12:14 bigrabbit 閱讀(190) | 評論 (0)編輯 收藏

            2012年7月22日 #

                 摘要: UVA 10801 Lift Hopping  閱讀全文
            posted @ 2012-07-22 23:43 bigrabbit 閱讀(1151) | 評論 (0)編輯 收藏

            2012年7月13日 #

                 摘要:   閱讀全文
            posted @ 2012-07-13 09:02 bigrabbit 閱讀(1117) | 評論 (0)編輯 收藏

            2012年4月30日 #

                 摘要:   閱讀全文
            posted @ 2012-04-30 16:30 bigrabbit 閱讀(432) | 評論 (1)編輯 收藏

            2012年4月22日 #

            今天做了次CF,兩個小時比賽時間。。用一小時水了兩題之后,又用一個小時的龜速想了一個不知道什么玩意的玩意,比賽沒A掉,比賽結束A掉了。為什么要想那么久呢。。。。。。水題也要想那么久。。。。。小細節處理不好。。。。。
            不過話說CF的題目不錯,不像廣大中文OJ的無腦題
            http://codeforces.com/problemset/problem/180/E 
            不貼代碼了。


            posted @ 2012-04-22 17:23 bigrabbit 閱讀(317) | 評論 (0)編輯 收藏

            僅列出標題  下一頁
            久久高清一级毛片| 亚洲精品美女久久久久99| 久久精品成人免费看| 91精品国产色综久久| 久久91精品国产91久| 国产成年无码久久久久毛片| 亚洲国产成人久久精品影视| 久久综合久久综合亚洲| 99久久精品毛片免费播放| 久久乐国产精品亚洲综合| 久久久国产精品亚洲一区| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久亚洲综合色一区二区三区| 国产精品欧美久久久久天天影视| 国产69精品久久久久9999APGF | 国产Av激情久久无码天堂| 久久精品成人欧美大片| 国产成人久久AV免费| 久久精品国产亚洲AV香蕉| 国产午夜精品久久久久九九| 久久久精品2019免费观看| 7777精品久久久大香线蕉| 青青草原综合久久大伊人导航 | 久久午夜免费视频| 久久九九免费高清视频| 亚洲伊人久久大香线蕉苏妲己| 久久久一本精品99久久精品66| 久久无码AV一区二区三区| 欧美伊人久久大香线蕉综合69| 国产精品美女久久久久av爽| 2021少妇久久久久久久久久| 欧美午夜精品久久久久免费视| 久久噜噜电影你懂的| 久久久精品人妻一区二区三区四| 亚洲伊人久久成综合人影院 | 合区精品久久久中文字幕一区| 久久国产高潮流白浆免费观看| 一本色道久久综合亚洲精品| 无码人妻久久一区二区三区蜜桃| 天天影视色香欲综合久久| 久久精品无码一区二区app|