• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Michael's Space

            Technology changes the world, serves the people.
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            SDA 過程解析

            Posted on 2006-05-03 17:15 奔跑的阿甘 閱讀(955) 評論(0)  編輯 收藏 引用 所屬分類: ATM Technology/EMV Notes
            SDA(Static data authentication) is performed by the terminal using a digital signature
            scheme based on public key techniques to confirm the legitimacy of critical ICCresident
            static data identified by the AFL and by the optional Static Data Authentication Tag List.
            This detects unauthorised alteration of data after personalisation.

            一 ICC應保存數據:
            a) CA Public Key Index
            b)Issuer Public Key Certificate
            c) Signed Static Application Data

            二 Terminal應保存數據:
            a) Six CA public keys per RID(Registered Application Provider Identifier)
            b) Key-related information for each CA public key
            c) Corresponding algorithm

            三 SDA過程按次序分三個步驟,其中任一步驟若出現異常則SDA失敗,只有三個步驟順利完成
            后SDA才成功:

            a) Retrieval of the Certification Authority Public Key
            The terminal reads the Certification Authority Public Key Index. Using this index
            and the RID, the terminal shall identify and retrieve the terminal-stored
            Certification Authority Public Key Modulus and Exponent and the associated keyrelated
            information, and the corresponding algorithm to be used. If the terminal does not have the
            key stored associated with this index and RID, static data authentication has failed.

            b) Retrieval of the Issuer Public Key
            1. If the Issuer Public Key Certificate has a length different from the length of the
            Certification Authority Public Key Modulus obtained in the previous section,
            static data authentication has failed.
            2. In order to obtain the recovered data specified in Table 4, apply the recovery
            function specified in Annex A2.1 to the Issuer Public Key Certificate using the
            Certification Authority Public Key in conjunction with the corresponding
            algorithm. If the Recovered Data Trailer is not equal to ‘BC’, static data
            authentication has failed.
            3. Check the Recovered Data Header. If it is not ‘6A’, static data authentication has
            failed.
            4. Check the Certificate Format. If it is not ‘02’, static data authentication has
            failed.
            5. Concatenate from left to right the second to the tenth data elements in Table 4
            (that is, Certificate Format through Issuer Public Key or Leftmost Digits of the
            Issuer Public Key), followed by the Issuer Public Key Remainder (if present) and
            finally the Issuer Public Key Exponent.
            6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
            to the result of the concatenation of the previous step to produce the hash result.
            7. Compare the calculated hash result from the previous step with the recovered
            Hash Result. If they are not the same, static data authentication has failed.
            8. Verify that the Issuer Identification Number matches the leftmost 3-8 PAN digits
            (allowing for the possible padding of the Issuer Identification Number with
            hexadecimal ‘F’s). If not, static data authentication has failed.
            9. Verify that the last day of the month specified in the Certificate Expiration Date
            is equal to or later than today's date. If the Certificate Expiration Date is earlier
            than today's date, the certificate has expired, in which case static data
            authentication has failed.
            10. Verify that the concatenation of RID, Certification Authority Public Key Index,
            and Certificate Serial Number is valid. If not, static data authentication has
            failed4.
            11. If the Issuer Public Key Algorithm Indicator is not recognised, static data
            authentication has failed.
            12. If all the checks above are correct, concatenate the Leftmost Digits of the Issuer
            Public Key and the Issuer Public Key Remainder (if present) to obtain the Issuer
            Public Key Modulus, and continue with the next steps for the verification of the
            Signed Static Application Data.

            c) Verification of the Signed Static Application Data
            1. If the Signed Static Application Data has a length different from the length of the
            Issuer Public Key Modulus, static data authentication has failed.
            2. In order to obtain the Recovered Data specified in Table 5, apply the recovery
            function specified in Annex A2.1 on the Signed Static Application Data using the
            Issuer Public Key in conjunction with the corresponding algorithm. If the
            Recovered Data Trailer is not equal to ‘BC’, static data authentication has failed.
            3. Check the Recovered Data Header. If it is not ‘6A’, static data authentication has
            failed.
            4. Check the Signed Data Format. If it is not ‘03’, static data authentication has
            failed.
            5. Concatenate from left to right the second to the fifth data elements in Table 5
            (that is, Signed Data Format through Pad Pattern), followed by the static data to
            be authenticated as specified in Part II of Book 3 of these specifications. If the
            Static Data Authentication Tag List is present and contains tags other than ‘82’,
            then static data authentication has failed.
            6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
            to the result of the concatenation of the previous step to produce the hash result.
            7. Compare the calculated hash result from the previous step with the recovered
            Hash Result. If they are not the same, static data authentication has failed.
            If all of the above steps were executed successfully, static data authentication was
            successful. The Data Authentication Code recovered in Table 5 shall be stored in
            Tag ‘9F45’.

            參考:<<EMV2000 Integrated Circuit Card Specification for Payment Systems Book 2
            ?- Security and Key Management>>
            丰满少妇人妻久久久久久4| 男女久久久国产一区二区三区| 蜜臀久久99精品久久久久久小说| 一本一本久久a久久综合精品蜜桃| 99国产欧美精品久久久蜜芽| 日本精品一区二区久久久| 久久久精品2019免费观看| 久久人人爽人人澡人人高潮AV| 人妻精品久久久久中文字幕69 | 尹人香蕉久久99天天拍| 国产成人久久精品区一区二区| 欧美久久综合性欧美| 欧洲人妻丰满av无码久久不卡 | 成人a毛片久久免费播放| 久久久久se色偷偷亚洲精品av| 一本伊大人香蕉久久网手机| 亚洲国产精品久久久天堂 | 大美女久久久久久j久久| 亚洲va中文字幕无码久久| 久久久WWW成人免费精品| 91精品国产高清久久久久久国产嫩草 | 一级女性全黄久久生活片免费 | 欧美激情精品久久久久| 亚洲精品无码久久久久久| 国产高清国内精品福利99久久| 亚洲欧美日韩中文久久| 国内精品伊人久久久影院| 蜜桃麻豆WWW久久囤产精品| 国产精品美女久久久久AV福利| av无码久久久久久不卡网站| 久久国产精品99精品国产987| 久久成人国产精品二三区| 色欲久久久天天天综合网| 久久久一本精品99久久精品88| 久久精品三级视频| 欧美久久一级内射wwwwww.| 精品久久久久久无码人妻蜜桃| 思思久久好好热精品国产| 国产精品久久久香蕉| 亚洲精品午夜国产va久久| 久久成人小视频|