• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 18,  comments - 5,  trackbacks - 0

            一、題目描述

            Description

            It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

            The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

            Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

            So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

            Input

            The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

            Output

            One line, consisting of an integer, which gives the minimum number of roads that we need to add.

            Sample Input

            Sample Input 1
            10 12
            1 2
            1 3
            1 4
            2 5
            2 6
            5 6
            3 7
            3 8
            7 8
            4 9
            4 10
            9 10
            Sample Input 2
            3 3
            1 2
            2 3
            1 3

            Sample Output

            Output for Sample Input 1
            2
            Output for Sample Input 2
            0
            


            二、分析
                  用DFS解決問題,詳細算法:割點與橋
            三、代碼

             1#include<iostream>
             2#include<list>
             3using namespace std;
             4int n, r;
             5list<int> g[1001];
             6int num, lab[1001], low[1001];
             7list<pair<intint> > edge;
             8int degree[1001];
             9int parent[1001], rank[1001];
            10void init_set()
            11{
            12    for(int i=1; i<1001; i++)
            13    {
            14        parent[i] = i;
            15        rank[i] = 1;
            16    }

            17}

            18int find(int k)
            19{
            20    if(parent[k] == k) 
            21        return k;
            22    else
            23        return parent[k] = find(parent[k]);
            24}

            25void union_set(int u, int v)
            26{
            27    int pu = find(u), pv = find(v);
            28    if(rank[pu] <= rank[pv])
            29    {
            30        parent[pu] = pv;
            31        rank[pv] += pu;
            32    }

            33    else
            34    {
            35        parent[pv] = pu;
            36        rank[pu] += pv;
            37    }

            38}

            39void dfs(int u, int p)
            40{
            41    lab[u] = low[u] = num++;
            42    list<int>::iterator it;
            43    for(it = g[u].begin(); it != g[u].end(); it++)
            44    {
            45        int v = *it;
            46        if(lab[v] == 0)
            47        {
            48            dfs(v, u);
            49            low[u] = min(low[u], low[v]);
            50            if(low[v] > lab[u])
            51                edge.push_back(make_pair(u, v));
            52            else
            53                union_set(u, v); //u與v能進行縮點
            54        }

            55        else if(v != p)
            56            low[u] = min(low[u], lab[v]);
            57    }

            58}

            59int main()
            60{
            61    scanf("%d%d"&n, &r);
            62    for(int i=1; i<=n; i++)
            63        g[i].clear();
            64    for(int i=1; i<=r; i++)
            65    {
            66        int v1, v2;
            67        scanf("%d%d"&v1, &v2);
            68        g[v1].push_back(v2);
            69        g[v2].push_back(v1);
            70    }

            71    memset(lab, 0sizeof lab);
            72    memset(low, 0x7fsizeof low);
            73    num = 1;
            74    init_set();
            75    dfs(10);
            76    memset(degree, 0sizeof degree);
            77    list<pair<intint> >::iterator it;
            78    int res = 0;
            79    for(it = edge.begin(); it != edge.end(); it++)
            80    {
            81        int u = it->first, v = it->second;
            82        degree[find(u)]++;
            83        if(degree[find(u)] == 1)
            84            res++;
            85        else if(degree[find(u)] == 2)
            86            res--;
            87        degree[find(v)]++;
            88        if(degree[find(v)] == 1)
            89            res++;
            90        else if(degree[find(v)] == 2)
            91            res--;
            92    }

            93    printf("%d\n", (res+1/ 2);
            94}
            posted on 2009-07-05 16:08 Icyflame 閱讀(1431) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告
            久久亚洲精品无码aⅴ大香| 久久99精品久久久久子伦| 久久久久黑人强伦姧人妻| 青青热久久国产久精品 | 久久久久一本毛久久久| 热RE99久久精品国产66热| 久久午夜伦鲁片免费无码| 久久91精品国产91久久户| 久久亚洲中文字幕精品一区四 | 久久久久久久波多野结衣高潮| 久久久久国产精品人妻| 91久久精品91久久性色| 久久婷婷色综合一区二区| 91精品国产乱码久久久久久 | 97精品国产91久久久久久| 国产亚州精品女人久久久久久| 亚洲中文字幕无码久久精品1 | 久久www免费人成看国产片| 久久精品国产日本波多野结衣| 99久久精品国产一区二区| 波多野结衣AV无码久久一区| 久久成人精品| 国产精品免费久久| 国内精品伊人久久久久av一坑 | 久久99热狠狠色精品一区| 热久久国产欧美一区二区精品| 国产精品久久99| 伊人久久大香线蕉av一区| 久久婷婷人人澡人人爽人人爱| 无码国内精品久久综合88| 欧美久久天天综合香蕉伊| 国产成人久久久精品二区三区| 99re久久精品国产首页2020| 久久久这里只有精品加勒比 | 久久精品无码一区二区无码| 亚洲欧洲久久久精品| 99久久国产亚洲综合精品| 伊人久久综合精品无码AV专区| 伊人久久大香线蕉综合影院首页 | 久久夜色精品国产亚洲| 一本色道久久88精品综合|