• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ArcTan

            dfs
            隨筆 - 16, 文章 - 117, 評論 - 6, 引用 - 0
            數據加載中……

            2008 Hangzhou 網絡賽-D hdu2421 (數論)

            Problem Description:
            Xiaoming has just come up with a new way for encryption, by calculating the key from a publicly viewable number in the following way:
            Let the public key N = AB, where 1 <= A, B <= 1000000, and a0, a1, a2, …, ak-1 be the factors of N, then the private key M is calculated by summing the cube of number of factors of all ais. For example, if A is 2 and B is 3, then N = AB = 8, a0 = 1, a1 = 2, a2 = 4, a3 = 8, so the value of M is 1 + 8 + 27 + 64 = 100.
            However, contrary to what Xiaoming believes, this encryption scheme is extremely vulnerable. Can you write a program to prove it?

            Input
            There are multiple test cases in the input file. Each test case starts with two integers A, and B. (1 <= A, B <= 1000000). Input ends with End-of-File.
            Note: There are about 50000 test cases in the input file. Please optimize your algorithm to ensure that it can finish within the given time limit.
            Output
            For each test case, output the value of M (mod 10007) in the format as indicated in the sample output.
             

            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.
            summing the cube of number of factors of all ais.

            讀不懂題意就是傻逼啊!!!!!!!
            這個題目是要求每個因子的因子的個數然后再立方和啊啊啊啊
            8的因子有1 2 4 8,它們的因子數有1 2 3 4啊,立方和為1+8+27+64=100啊。
            轉化為算術基本定理:
            N=A^B
            求N的每個因子的因子數:
                  任何一個大于1的數可以分解成 N=a1^p1*a2^p2*a3^p3*...*an^pn, N的約數總數為(p1+1)*(p2+1)*...*(pn+1),
                  (0,1,...,p1)(0,1,...,p2)...(0,1,...,pn)
                   不難發現(1^3+2^3+...+(p1+1)^3) (1^3+2^3+...+(p2+1)^3)...(1^3+2^3+...+(pn+1)^3)即為所求。


            #include<stdio.h>
            #include
            <string.h>
            #include
            <math.h>
            #define maxn 1000005
            int p[1015];
            int  b[1015];
            int tot;

            int eular()
            {
                memset(b,
            0,sizeof(b));
                
            int i=2;tot=0;
                
            while (i<1010)
                {
                    
            while (b[i])    i++;
                    p[tot
            ++]=i;
                    
            int j=i;
                    
            while (j<1010)
                    {
                        b[j]
            =1;
                        j
            +=i;
                    }
                }
                tot
            --;
                
            return 0;
            }

            int main()
            {
                
            long long A,B;
                
            int t=0;
                eular();
                
            while (scanf("%I64d%I64d",&A,&B)==2)
                {
                    printf(
            "Case %d: ",++t);
                    B
            %=10007;
                    
            long long ans=1;
                    
            long long t,tt;
                    
            int i=0;
                    
            while (i<tot && A>1)
                    {
                        t
            =0;
                        
            while (A%p[i]==0)
                            t
            ++,A/=p[i];
                        tt
            =(t*B+1)*(t*B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt) % 10007;
                        i
            ++;
                    }
                    
            if (A>1)
                    {
                        tt
            =(B+1)*(B+2)/2 % 10007;
                        tt
            =tt*tt % 10007;
                        ans
            =(ans*tt)%10007;
                    }
                    printf(
            "%I64d\n",ans);
                }
                
            return 0;
            }




            posted on 2012-07-19 15:09 wangs 閱讀(224) 評論(0)  編輯 收藏 引用 所屬分類: ACM-數學

            色欲综合久久躁天天躁| 久久99国产精品久久久| 人妻无码精品久久亚瑟影视 | 亚洲AV无一区二区三区久久| 久久婷婷五月综合色高清| 99久久精品九九亚洲精品| 成人综合久久精品色婷婷| 2021少妇久久久久久久久久| 久久久久亚洲精品男人的天堂| 亚洲伊人久久精品影院| 99久久久久| 久久99免费视频| 久久精品国产亚洲精品2020 | 久久精品国产第一区二区| 久久久SS麻豆欧美国产日韩| 国产精品狼人久久久久影院| 国产精品一区二区久久不卡| 亚洲欧美成人久久综合中文网| 老司机国内精品久久久久| 精品熟女少妇AV免费久久| 蜜桃麻豆www久久国产精品| 热久久这里只有精品| 久久久久无码精品国产| 无码国内精品久久人妻| 久久精品国产男包| 亚洲精品高清一二区久久| 国产成人精品久久一区二区三区av | 午夜视频久久久久一区| 国产精品欧美久久久久无广告| 99久久久国产精品免费无卡顿| 精品一二三区久久aaa片| 久久综合久久美利坚合众国| 久久综合鬼色88久久精品综合自在自线噜噜 | 国产精品内射久久久久欢欢 | 国产成人99久久亚洲综合精品| 91久久香蕉国产熟女线看| 9191精品国产免费久久| 久久久久18| 一本久久a久久精品亚洲| 色欲综合久久躁天天躁蜜桃| 狠狠色丁香久久婷婷综合五月|