??xml version="1.0" encoding="utf-8" standalone="yes"?>亚洲欧洲精品成人久久曰影片,亚洲国产精品久久66,久久综合九色综合97_久久久http://m.shnenglu.com/ArcTan/category/18729.htmldfszh-cnSun, 29 Apr 2012 03:34:26 GMTSun, 29 Apr 2012 03:34:26 GMT60CFQApril Fools Day ContestQ?0120401Q?/title><link>http://m.shnenglu.com/ArcTan/articles/169845.html</link><dc:creator>wangs</dc:creator><author>wangs</author><pubDate>Mon, 02 Apr 2012 03:27:00 GMT</pubDate><guid>http://m.shnenglu.com/ArcTan/articles/169845.html</guid><wfw:comment>http://m.shnenglu.com/ArcTan/comments/169845.html</wfw:comment><comments>http://m.shnenglu.com/ArcTan/articles/169845.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://m.shnenglu.com/ArcTan/comments/commentRss/169845.html</wfw:commentRss><trackback:ping>http://m.shnenglu.com/ArcTan/services/trackbacks/169845.html</trackback:ping><description><![CDATA[<div><h4><a title="April Fools Day Contest">171A - Mysterious numbers - 1</a></h4><p>The easiest way to make the problem statement unusual is to omit it. This is an extremely convenient approach — you don’t have to maintain the statement in two languages or to worry that it might turn out to be ambiguous or too long or too scary. 690 people solved this problem, so evidently we can omit statements even in regular rounds :-)</p><p>As for the problem itself, it required to sum the first number and the reverse of the second number.</p><h4><a title="April Fools Day Contest">171B - A star</a></h4><p>They say it’s better to see once than to hear ten times or to read a hundred times. In this problem we decided to check this and to replace the traditional textual statement with a single image. Same as in the previous problem, it did well — at least 645 participants recognized star numbers (sequence <a >http://oeis.org/A003154</a> in OEIS), the numbers of balls needed to form a six-pointed start of certain size. After this one had only to code the formula — <em>S</em><sub><em>n</em></sub> = 6<em>n</em>(<em>n</em>−1) + 1.</p><h4><a title="April Fools Day Contest">171D - Broken checker</a></h4><p>What does one do if the statement is unknown and the only source of information about the problem is the checker? Right — you just try all possible functions which convert 5 input values into 3 output values and see which of them fits :-)</p><h4><a title="April Fools Day Contest">171F - ucyhf</a></h4><p>This problem finally has a statement! The trick is, it’s encoded. We decided to be kind to you and to use the simplest cipher possible — Caesar cipher (each letter is shifted the same number of positions in the alphabet). By a long stretch of imagination one could break the cipher by hand — observe frequent letters and short words, deduce possible values of shift and verify it against the rest of the message. A lazier one could Goog</p><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_112028" onclick="this.style.display='none'; Code_Closed_Text_112028.style.display='none'; Code_Open_Image_112028.style.display='inline'; Code_Open_Text_112028.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_112028" style="display: none" onclick="this.style.display='none'; Code_Open_Text_112028.style.display='none'; Code_Closed_Image_112028.style.display='inline'; Code_Closed_Text_112028.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_112028" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_112028" style="display: none"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> n;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">n)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">1</span><span style="color: #000000; ">)<br />    {<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">6</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">-</span><span style="color: #000000; ">6</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">+</span><span style="color: #000000; ">1</span><span style="color: #000000; ">);<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000;">;<br />}<br /></span></span></div><p>le for a tool like <a >this one</a> and get the decoded version semi-automatically.</p><p>After cracking the statement the rest was almost easy — you had to find a prime whose reverse is a prime different from the original one (sequence <a>http://oeis.org/A006567)</a>. 11184-th such number equals 999983, so one could do a brute-force check of all numbers in row.</p><h4><a title="April Fools Day Contest">171E - UNKNOWN LANGUAGE</a></h4><p>A special contest written by me and no special programming language? Impossible! I pulled myself up and made only 25% of all problems esoteric — that’s two. There really should be three but the third interpreter refused to cooperate. Maybe next time…</p><p>What can one do if all he knows about the language is its compiler? Just run any code and see what the compiler says. In this case the compiler said “DO YOU EXPECT ME TO FIGURE THIS OUT?”, and Google should tell you immediately that the language in question is <a >INTERCAL</a>. The problem simplifies to figure out the dialect used and how to output “INTERCAL” in it.</p><p>In Codeforces round #96 I gave a problem <a title="Codeforces Beta Round 96 (Div. 2)">133C - Turing Tape</a> which explained the mechanism of string output in INTERCAL and asked to write a program which converted a string into an array of numbers which would print this string. Combine this knowledge with <a >Hello, World! example</a> and you get the program you need. Actually, that’s what I did to write the reference solution.</p> <pre><code>PLEASE DO ,1 <- #8<span> DO </span>,1 SUB #1 <- #110<span> PLEASE DO </span>,1 SUB #2 <- #32<span> DO </span>,1 SUB #3 <- #72<span> DO </span>,1 SUB #4 <- #136<span> DO </span>,1 SUB #5 <- #88<span> DO </span>,1 SUB #6 <- #136<span> DO </span>,1 SUB #7 <- #64<span> DO </span>,1 SUB #8 <- #80<span> PLEASE READ OUT </span>,1<span> PLEASE GIVE UP</span></code></pre><h4><a title="April Fools Day Contest">171C - A Piece of Cake</a></h4><p>The second esoteric problem had a <a >Chef</a> program as the statement. You had only to figure out what it does and do it in any regular language. It turns out that this program reads N followed by N numbers $a_1, a_2, …, a_N$ and calculated the sum <em>i</em> * <em>a</em><sub><em>i</em></sub>.</p><h4><a title="April Fools Day Contest">171G - Mysterious numbers - 2</a></h4><p>This one was much harder to guess but much easier to code. First two numbers were the start of a Fibonacci-like sequence, and the third one was the index of the required number in this sequence.</p></div><br /><br />W一ơ做CFQ看来是没有选好旉啊,呵呵QApril Fools DayQ把我娱乐愚了?br />主说这是个智慧的比赛,我承认,自己智商不行不行~~~~<br />AQ?br /><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_111953" onclick="this.style.display='none'; Code_Closed_Text_111953.style.display='none'; Code_Open_Image_111953.style.display='inline'; Code_Open_Text_111953.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_111953" style="display: none" onclick="this.style.display='none'; Code_Open_Text_111953.style.display='none'; Code_Closed_Image_111953.style.display='inline'; Code_Closed_Text_111953.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_111953" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_111953" style="display: none"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> down(</span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> s)<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> t;<br />    t</span><span style="color: #000000; ">=</span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (s)<br />    {<br />        t</span><span style="color: #000000; ">=</span><span style="color: #000000; ">10</span><span style="color: #000000; ">*</span><span style="color: #000000; ">t</span><span style="color: #000000; ">+</span><span style="color: #000000; ">s</span><span style="color: #000000; ">%</span><span style="color: #000000; ">10</span><span style="color: #000000; ">;<br />        s</span><span style="color: #000000; ">/=</span><span style="color: #000000; ">10</span><span style="color: #000000; ">;<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> t;<br />}<br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> a,b;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">a,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">b)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">2</span><span style="color: #000000; ">)<br />    {<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,a</span><span style="color: #000000; ">+</span><span style="color: #000000; ">down(b));<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />}<br /></span></span></div>BQ?br /><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_112050" onclick="this.style.display='none'; Code_Closed_Text_112050.style.display='none'; Code_Open_Image_112050.style.display='inline'; Code_Open_Text_112050.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_112050" style="display: none" onclick="this.style.display='none'; Code_Open_Text_112050.style.display='none'; Code_Closed_Image_112050.style.display='inline'; Code_Closed_Text_112050.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_112050" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_112050" style="display: none"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> n;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">n)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">1</span><span style="color: #000000; ">)<br />    {<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">6</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">-</span><span style="color: #000000; ">6</span><span style="color: #000000; ">*</span><span style="color: #000000; ">n</span><span style="color: #000000; ">+</span><span style="color: #000000; ">1</span><span style="color: #000000; ">);<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />}<br /></span></span></div>CQ?br /><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_112117" onclick="this.style.display='none'; Code_Closed_Text_112117.style.display='none'; Code_Open_Image_112117.style.display='inline'; Code_Open_Text_112117.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_112117" style="display: none" onclick="this.style.display='none'; Code_Open_Text_112117.style.display='none'; Code_Closed_Image_112117.style.display='inline'; Code_Closed_Text_112117.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_112117" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_112117" style="display: none"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> n,i,sum,a;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">n)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">1</span><span style="color: #000000; ">)<br />    {<br />        sum</span><span style="color: #000000; ">=</span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />        </span><span style="color: #0000FF; ">for</span><span style="color: #000000; "> (i</span><span style="color: #000000; ">=</span><span style="color: #000000; ">1</span><span style="color: #000000; ">;i</span><span style="color: #000000; "><=</span><span style="color: #000000; ">n ;i</span><span style="color: #000000; ">++</span><span style="color: #000000; "> )<br />        {<br />            scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">a);<br />            sum</span><span style="color: #000000; ">+=</span><span style="color: #000000; ">i</span><span style="color: #000000; ">*</span><span style="color: #000000; ">a;<br />        }<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,sum);<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />}<br /></span></span></div>DQ?br /><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_112321" onclick="this.style.display='none'; Code_Closed_Text_112321.style.display='none'; Code_Open_Image_112321.style.display='inline'; Code_Open_Text_112321.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_112321" style="display: none" onclick="this.style.display='none'; Code_Open_Text_112321.style.display='none'; Code_Closed_Image_112321.style.display='inline'; Code_Closed_Text_112321.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_112321" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_112321" style="display: none;"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> g[</span><span style="color: #000000; ">6</span><span style="color: #000000; ">]</span><span style="color: #000000; ">=</span><span style="color: #000000; ">{</span><span style="color: #000000; ">0</span><span style="color: #000000; ">,</span><span style="color: #000000; ">2</span><span style="color: #000000; ">,</span><span style="color: #000000; ">3</span><span style="color: #000000; ">,</span><span style="color: #000000; ">1</span><span style="color: #000000; ">,</span><span style="color: #000000; ">2</span><span style="color: #000000; ">,</span><span style="color: #000000; ">1</span><span style="color: #000000; ">},i;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">i)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">1</span><span style="color: #000000; ">)<br />    {<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,g[i]);<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000; ">;<br />}<br /></span></span></div>GQ?br /><div style="background-color:#eeeeee;font-size:13px;border:1px solid #CCCCCC;padding-right: 5px;padding-bottom: 4px;padding-left: 4px;padding-top: 4px;width: 98%;word-break:break-all"><img id="Code_Closed_Image_112355" onclick="this.style.display='none'; Code_Closed_Text_112355.style.display='none'; Code_Open_Image_112355.style.display='inline'; Code_Open_Text_112355.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ContractedBlock.gif" width="11" align="top" height="16"><img id="Code_Open_Image_112355" style="display: none" onclick="this.style.display='none'; Code_Open_Text_112355.style.display='none'; Code_Closed_Image_112355.style.display='inline'; Code_Closed_Text_112355.style.display='inline';" src="http://m.shnenglu.com/images/OutliningIndicators/ExpandedBlockStart.gif" width="11" align="top" height="16"><span id="Code_Closed_Text_112355" style="border-right: #808080 1px solid; border-top: #808080 1px solid; border-left: #808080 1px solid; border-bottom: #808080 1px solid; background-color: #ffffff"></span><span id="Code_Open_Text_112355" style="display: none"><br /><!--<br /><br />Code highlighting produced by Actipro CodeHighlighter (freeware)<br />http://www.CodeHighlighter.com/<br /><br />--><span style="color: #000000; ">#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">stdio.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #0000FF; ">string</span><span style="color: #000000; ">.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br />#include</span><span style="color: #000000; "><</span><span style="color: #000000; ">math.h</span><span style="color: #000000; ">></span><span style="color: #000000; "><br /><br /></span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> main()<br />{<br />    </span><span style="color: #0000FF; ">int</span><span style="color: #000000; "> a,b,c;<br />    </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (scanf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d%d%d</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">a,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">b,</span><span style="color: #000000; ">&</span><span style="color: #000000; ">c)</span><span style="color: #000000; ">==</span><span style="color: #000000; ">3</span><span style="color: #000000; ">)<br />    {<br />        c</span><span style="color: #000000; ">--</span><span style="color: #000000; ">;<br />        </span><span style="color: #0000FF; ">while</span><span style="color: #000000; "> (c</span><span style="color: #000000; ">--</span><span style="color: #000000; ">)<br />        {<br />            b</span><span style="color: #000000; ">=</span><span style="color: #000000; ">a</span><span style="color: #000000; ">+</span><span style="color: #000000; ">b;<br />            a</span><span style="color: #000000; ">=</span><span style="color: #000000; ">b</span><span style="color: #000000; ">-</span><span style="color: #000000; ">a;<br />        }<br />        printf(</span><span style="color: #000000; ">"</span><span style="color: #000000; ">%d\n</span><span style="color: #000000; ">"</span><span style="color: #000000; ">,b);<br />    }<br />    </span><span style="color: #0000FF; ">return</span><span style="color: #000000; "> </span><span style="color: #000000; ">0</span><span style="color: #000000;">;<br />}<br /></span></span></div><br />E和F表示不会啊,再研I研I吧。弱爆了~~~~<br /><br />主实很厉宛_Q看来今q又果断会被虐了?br /><br />惌力不行呀Q?img src ="http://m.shnenglu.com/ArcTan/aggbug/169845.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.shnenglu.com/ArcTan/" target="_blank">wangs</a> 2012-04-02 11:27 <a href="http://m.shnenglu.com/ArcTan/articles/169845.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>矩阵胚系l?/title><link>http://m.shnenglu.com/ArcTan/articles/169719.html</link><dc:creator>wangs</dc:creator><author>wangs</author><pubDate>Sat, 31 Mar 2012 14:55:00 GMT</pubDate><guid>http://m.shnenglu.com/ArcTan/articles/169719.html</guid><wfw:comment>http://m.shnenglu.com/ArcTan/comments/169719.html</wfw:comment><comments>http://m.shnenglu.com/ArcTan/articles/169719.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://m.shnenglu.com/ArcTan/comments/commentRss/169719.html</wfw:commentRss><trackback:ping>http://m.shnenglu.com/ArcTan/services/trackbacks/169719.html</trackback:ping><description><![CDATA[<div>矩阵?br />  矩阵胚的定义是:<br />  M={S,I}<br />  其中S为有限集QI为S的一个子集族Q满下面条Ӟ<br />  1.{}属于I<br />  2.如果集合X属于IQ则X的所有子集都属于I?br />  3.如果集合WQV都属于IQ且|V|>|W|,则V中存在一个不在W中的集合zQWq{z}属于I?I中的集合叫做矩阵胚的独立子集。上面三个定义保证了独立子集h如下属性:<br />  1.独立子集臛_有一个(I集Q?br />  2.独立子集?#8220;遗传”的?br />  3.只要一个独立子集不是最大(元素最多)的,我们d以把它变得更大?br />  定义Q把S中的元素加非负的权,我们可以得到一个加权矩阵胚?br />  定理1Q贪心的扩展加权矩阵胚可以得到最优子集?br />  证明Q设贪心法得到的独立子集是BQ最优独立子集ؓT(如果有多个TQ选择使B交T最大的那个)Q那么:<br />  i)如果B=T,则成?br />  ii)否则Q设xZ在T中的W一个被贪心法选择的元素,则Tqx为非独立集(否则与T最大矛盾)?br />  设C为Tqx的子集中的最的非独立集Q则x属于C(否则C׃ؓT的子集,与属?矛盾)。这P我们取C<br />  中Q意不属于B的元素yQ又条g3QC-{y}为独立集?br />  下面Q我们从C-{y}出发构造一个最优独立子集T_1QB交T_1比B交T更大?br />  对于C-{y}Q我们把T中不属于其中的元素依ơ加到里面(Ҏ属?Q,则最后我们得C个T_1,<br />  其中T_1=T-{y}+{x}?br />  下面Q我们来说明w(x)=w(y)?br />  1.T是最优的Q因此w(T_1)<=w(T),即w(x)<=w(y)<br />  2.假设贪心法选择x之前选择q的元素集合为X,那么QX为T的子集,且Xq{y}也是T的子集。那么,?br />  选择x的时候,y也是可以选的。但是贪心算法选择的是x,必有w(x)>=w(y),故w(x)=w(y)<br />  q样QT_1也是最优独立子集,但是T_1比T多一个在B中的元素x,与T的选择矛盾。故贪心法能够选择最?br />  独立子集?br />  定理2Q如果F关于子集q算是封闭的Q而对于Q何权函数(F,w),贪心法都适用Q则F为某个矩阵胚?br />  独立子集族?br />  q里略去定理的证明,想知道证明的朋友可以来信问我?br />  两个常用的独立子集的例子是:<br />  1.有限个nl向量集合中个线性无关的向量 ?br />  2.某个图中没有圈的辚w?br />  Ҏ定理一Q我们如果可以把问题归结成在加权矩阵胚中求最优独立子集的问题Q需要验证问题的l构满矩阵?br />  的三个定义)Q我们就可以采用贪心法。也是每次选取权值最优的元素加到独立子集中,最后得到的最大独立子<br />  集必然是最优的?/div><img src ="http://m.shnenglu.com/ArcTan/aggbug/169719.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.shnenglu.com/ArcTan/" target="_blank">wangs</a> 2012-03-31 22:55 <a href="http://m.shnenglu.com/ArcTan/articles/169719.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>贝蒂定理http://m.shnenglu.com/ArcTan/articles/169718.htmlwangswangsSat, 31 Mar 2012 14:55:00 GMThttp://m.shnenglu.com/ArcTan/articles/169718.htmlhttp://m.shnenglu.com/ArcTan/comments/169718.htmlhttp://m.shnenglu.com/ArcTan/articles/169718.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169718.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169718.html贝蒂定理
    英文译?Betti theorem
    设a、b是正无理C 1/a +1/b =1。记P={ [na] | nZQ意的正整数}QQ={ [nb] | n ZQ意的正整数}Q?[x]'指的是取x的整数部?则P与Q是Z+的一个划分,即P∩Q为空集且P∪Q为正整数集合Z+?br />    证明Q因为a、b为正?/a +1/b=1Q则a、b>1Q所以对于不同的整数nQ[na]各不相同Q类似对b有相同的l果。因此Q一个整数至多在集合P或Q中出Cơ?br />    * 现证明P∩Q为空集;(反证?假设k为P∩Q的一个整敎ͼ则存在正整数m、n使得[ma]=[nb]=k。即k < ma、nb<k+1Q等价地改写不等式ؓ
    * m/(k+1)< 1/a < m/k及n/(k+1)< 1/b < n/k。相加v来得 (m+n)/(k+1) < 1 < (m+n)/kQ即 k < m+n < k+1。这与m、n为整数有矛盾Q所以P∩Q为空集?现证明Z+=P∪QQ已知P∪Q是Z+的子集,剩下来只要证明Z+是P∪Q的子集?反证?假设Z+\(P∪Q)有一个元素kQ则存在正整数m、n使得[ma]< k <[(m+1)a]、[nb]< k <[(n+1)b]?由此得ma < k ≦[ (m+1)a]-1<(m+1)a -1Q类似地有nb < k ≦[ (n+1)b]-1<(n+1)b -1。等价地改写?m/k < 1/a < (m+1)/(k+1)及n/k < 1/b < (n+1)/(k+1)。两式加hQ得
    (m+n)/k < 1 < (m+n+2)/(k+1)Q即m+n < k < k+1 < m+n+2。这与m, n, k皆ؓ正整数矛盾。所以Z+=P∪Q?br />   

wangs 2012-03-31 22:55 发表评论
]]>
对于0-1分数规划的Dinkelbach法的分?/title><link>http://m.shnenglu.com/ArcTan/articles/169717.html</link><dc:creator>wangs</dc:creator><author>wangs</author><pubDate>Sat, 31 Mar 2012 14:54:00 GMT</pubDate><guid>http://m.shnenglu.com/ArcTan/articles/169717.html</guid><wfw:comment>http://m.shnenglu.com/ArcTan/comments/169717.html</wfw:comment><comments>http://m.shnenglu.com/ArcTan/articles/169717.html#Feedback</comments><slash:comments>0</slash:comments><wfw:commentRss>http://m.shnenglu.com/ArcTan/comments/commentRss/169717.html</wfw:commentRss><trackback:ping>http://m.shnenglu.com/ArcTan/services/trackbacks/169717.html</trackback:ping><description><![CDATA[<div>对于0-1分数规划的Dinkelbach法的分?br /><br />                  武钢三中 吴豪[译]<br />摘要:<br />0-1分数规划问题是指求出解集{xi|xi=0?}使目?c1x1+c2x2+...+cnxn) /(d1x1+d2x2+…+dnxn)=cx/dx辑ֈ最大。对于分数规划问题,Dinkelbach提出了一个算法,它通过解决一个子问题Q(L)来得到原文题的解。这里Q是一个线性的最化目标函数cx-LdxQ且满x{于0?。在本文中,我们证明了Dinkelbach法在最坏情况下可以在O(log(nM))的时间内解决子问题,q里M=max{max|ci|,max|di|,1}?br />1Q?-1分数规划问题<br /><br />要两个U性函数的比值最大或最的问题Q我们称作分数规划问题或双曲UK题。分数规划问题在许多领域都可以找到[22]。它在经学中的应用有些常见的例子,如寻找最优收入比率或者在效益U束下的最佳物资调配问题。另外,pȝ效率也常常用比率来衡量,如收?旉、利?风险和消?旉。有大量的文章对q类问题做了分析[3Q?Q?2Q?0Q?4]?br /><br /><br />有几cd数规划问题已被广泛地研究。如0-1分数规划问题[1],它包含最优比率生成树问题[4]Q最优比率环问题[8Q?Q?9]Q分数背包问题[15]Q以及分数剪枝问题[10]。在本文中,我们研究0-1分数规划问题Q它的描q如下:<br /><br /><br />令c=(c1,c2,…,cn)和d=(d1,d2,…,dn)为nl整数向量,那么一?-1分数规划问题用公式描q如?<br /><br />FP: 最化<br />(c1x1+…cnxn)/(d1x1…dnxn)=cx/dx<br />                     xi∈{0,1}<br />q里x表示列向?x1,x2,…,xn)T .0-1值向量的子集ΩUC可行域,而x则是Ω的一个元素,我们Ux为可行解。诏I全文,我们假定对于L可行解x,dx都是正数。这里我们记C=max{max|ci|,1},D=max{max|di|,1}。那么,昄问题的最优解在区间[-nC,nC]内?br />对于分数规划问题Q有许多法都能利用下面的线性目标函数解决问题?br /><br />Q(L): 最化 cx-Ldx<br /><br />xi∈{0,1}<br />记z(L)为Q(L)的最倹{ox*为分数规划的最优解Qƈ且oL*=(cx*)/(dx*)(注:分数规划的最?。那么下面就Ҏ知道了:<br /><br />z(L) > 0<br />当且仅当<br />L<L*<br /><br />z(L) = 0<br />当且仅当<br />L=L*<br /><br />z(L) < 0<br />当且仅当<br />L>L*<br /><br />此外QQ(L*)的最优解也能使分数规划最优化[7,16,17]。因此,解决分数规划问题在本质上{同于寻找L=L*使z(L)=0。出于这个目的,关于L的函数z(L)h很多不错的性质Q分D늺性,凹函敎ͼ严格递减Qz(-nC)<0Q且z(nC)>0。根据上面的性质Q显然当我们定参量LQ我们可以检验最值L*是否大于于或等于当前的L?br />有一些方法能够生一pd收敛于L*的参量。其中一U借助于二分搜索[17,21,13]。在两个不同的可行解的目标g相同的情况下Q他们的差距大于等?/(nD)^2。这暗示我们Q当我们采用二分搜烦Ӟ最优值L*可以通过解决子问题Q(L)在最多O(log(2nC/(1/nD)^2))<=O(log(nCD))的时间内得到?br />?979q_Megiddo[18]提出了一个y妙的Ҏ来系l地产生参量序列。他证明了如果子问题Q(L)能够通过O(p(n))的比较和O(q(n))的篏加被解决Q那么分数规划问题就能用O(p(n)+q(n))的时间被解决?br />另一U方法理ZcM于牛P代法Q他被Isbell、Marlow[14]和Dinkelbach[7]提出Q也被称作Dinkelbach法Q。这个算法在[17,21,11]中被讨论Q也可能是其他文献)。下一节将对它q行正式的论q。Schaible[21]证明了对于非U性分数规划问题,二分搜烦的方法的收敛速度仅仅是线性的Q而Dinkelbach的收敛速度却是线性的。另外,据说Dinkelbach法在实际应用中强力而有效(参见[13,23]的例子)。然而,Dinkelbach法对于0-1分数规划问题的最坏时间复杂度却没有被证明。在本文中,我们证明?Dinkelbach法最多会在O(log(nCD))的时间内解决子问题。注意它的时间复杂度与普通的二分搜烦相同。我们的l论暗示了,如果对于子问题Q(L)存在多项式算法,Dinkelbach法也能够在多项式时间内解决分数规划问题。另外,即子问题Q(L)是NP-完全或NP-隄Q对于特D的分数规划我们也能够在多项式时间内?br /><br />2QDinkelbach法的论q?br />它本质上是观察直U?br /><br />z=cx’-Ldx’<br />于函数z(L)在L=L’处相切,q里x’是子问题Q(L’)的最优解。因此,-dx’是z(L)在L’处的斜率。而且很容易看Z面的直线与L轴相交与L=cx’/dx’.<br />现在我们来描qDinkelbach对于分数规划的算法。Dinkelbach法产生了收敛于L*的参量序列,如图1中细U所C的方式?br /><br />Dinkelbach法Q?br />步骤1Q设L=L1,?L*<=L1<=nC<br />步骤2Q解军_问题Q(L)q得到最优解x<br />步骤3Q如果z(L)=0Q那么输出xq终止。否则,设L=cx/dx跛_步骤2<br /><br />Z初始化L1,用到nCQ因此充分挖掘拓展问题的l构能做出更好的选择?br /><br /> <br />0/1规划问题q当于一个求极值问题,要求解得数看成一个未知数Q然后根据二分查找求得这个未知数的最倹{?br /><br /><br /><br />#include<iostream><br />#include<cmath><br />#include<algorithm><br />using namespace std;<br />int n,k,a[1110],b[1110];<br />double low,higth,mid;<br />double s[1005],sum;<br />int cmp(double x,double y)<br />{<br /> return x>y;<br />}<br />int main()<br />{<br /> //freopen("in.txt","r",stdin);<br /> int i;<br /> while(cin>>n>>k)<br /> {<br />  if(k == 0 && n == 0)<br />   break;<br />  for(i=1;i<=n;i++)<br />   cin>>a[i];<br />  for(i=1;i<=n;i++)<br />   cin>>b[i];<br />  low = 0.0;<br />  higth = 100.0;<br />  while(higth - low >= 0.001)<br />  {<br />   mid = (higth+low)/2;<br />   for(i=1;i<=n;i++)<br />    s[i] = a[i]*100.0-1.0*b[i]*mid;<br />   sort(s+1,s+n+1,cmp);<br />   sum = 0;<br />   for(i=1;i<=n-k;i++)<br />    sum += s[i];<br />   if(sum>=0)<br />    low = mid;<br />   else<br />    higth = mid;<br />  }<br />  cout<<(int)(low+0.5)<<endl;<br /> }<br /> return 0;<br />}<br /></div><img src ="http://m.shnenglu.com/ArcTan/aggbug/169717.html" width = "1" height = "1" /><br><br><div align=right><a style="text-decoration:none;" href="http://m.shnenglu.com/ArcTan/" target="_blank">wangs</a> 2012-03-31 22:54 <a href="http://m.shnenglu.com/ArcTan/articles/169717.html#Feedback" target="_blank" style="text-decoration:none;">发表评论</a></div>]]></description></item><item><title>zoj题目分类http://m.shnenglu.com/ArcTan/articles/169716.htmlwangswangsSat, 31 Mar 2012 14:53:00 GMThttp://m.shnenglu.com/ArcTan/articles/169716.htmlhttp://m.shnenglu.com/ArcTan/comments/169716.htmlhttp://m.shnenglu.com/ArcTan/articles/169716.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169716.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169716.htmlZOJ题目分类

初学者题Q?

1001 1037 1048 1049 1051 1067 1115 1151 1201 1205 1216 1240 1241 1242 1251 1292 1331
1334 1337 1338 1350 1365 1382 1383 1394 1402 1405 1414 1494 1514 1622 1715 1730 1755
1760 1763 1796 1813 1879 1889 1904 1915 1949 2001 2022 2099 2104 2108 2172 2176 2201
2208 2321 2345 2351 2376 2388 2405 2417 2433

模拟问题Q?

1006 1009 1012 1016 1019 1023 1026 1028 1038 1042 1045 1051 1056 1057 1058 1061 1065
1066 1068 1072 1073 1078 1087 1088 1097 1098 1099 1103 1111 1121 1124 1126 1128 1133
1138 1146 1152 1154 1160 1175 1178 1187 1194 1207 1222 1224 1244 1259 1267 1274 1275
1277 1278 1279 1281 1282 1294 1295 1300 1308 1317 1324 1339 1351 1362 1392 1393 1397
1398 1399 1400 1402 1432 1434 1444 1452 1475 1487 1493 1497 1517 1526 1527 1530 1531
1552 1569 1573 1592 1601 1610 1623 1631 1641 1652 1657 1659 1682 1692 1700 1702 1707
1708 1712 1728 1732 1737 1746 1747 1750 1752 1754 1758 1764 1768 1774 1797 1799 1804
1807 1811 1822 1824 1831 1834 1837 1838 1842 1844 1845 1854 1858 1862 1870 1881 1884
1889 1896 1906 1921 1951 1969 1978 2000 2022 2040 2046 2047 2051 2072 2084 2101 2112
2131 2133 2138 2148 2153 2156 2160 2164 2172 2178 2184 2185 2187 2189 2193 2196 2201
2204 2208 2211 2212 2220 2229 2233 2239 2240 2261 2262 2269 2277 2288 2301 2309 2311
2312 2316 2320 2321 2322 2328 2330 2350 2389 2405 2410 2414 2420 2421 2483 2508 2560
2569 2572 2593 2613 2617 2680 2681 2731 2732 2743

动态规划:

1013 1022 1025 1027 1074 1076 1093 1094 1100 1107 1108 1136 1149 1183 1196 1200 1206
1227 1234 1245 1249 1250 1276 1303 1346 1353 1366 1368 1387 1424 1425 1428 1446 1448
1449 1454 1459 1462 1463 1470 1474 1475 1483 1484 1490 1499 1503 1512 1515 1520 1524
1539 1540 1554 1563 1567 1579 1602 1607 1611 1629 1638 1642 1651 1666 1695 1713 1717
1731 1733 1736 1738 1743 1756 1757 1787 1792 1800 1819 1853 1864 1877 1880 1893 1913
1918 1925 1953 1985 1986 1988 1991 1995 2002 2014 2025 2042 2058 2059 2067 2068 2069
2081 2096 2127 2136 2142 2144 2156 2180 2189 2202 2206 2213 2224 2227 2242 2244 2254
2255 2264 2271 2278 2280 2281 2283 2284 2297 2319 2337 2338 2341 2349 2353 2354 2366
2372 2374 2397 2401 2402 2414 2422 2424 2432 2498 2501 2521 2522 2527 2536 2547 2561
2563 2565 2568 2581 2591 2598 2604 2621 2624 2625 2626 2641 2642 2667 2673 2683 2685
2692 2702 2710 2711 2734 2739 2744 2745

字符串处理问题:

1002 1004 1005 1008 1016 1019 1046 1048 1049 1050 1051 1052 1053 1054 1055 1056 1061
1063 1086 1089 1091 1094 1099 1101 1103 1111 1115 1117 1118 1120 1123 1125 1126 1129
1130 1136 1139 1143 1150 1151 1152 1154 1159 1160 1168 1170 1177 1178 1179 1180 1181
1184 1188 1189 1190 1191 1192 1195 1197 1243 1295 1315 1325 1392 1582 1698 1707 1720
1729 1808 1831 1854 1858 1905 1963 1969 1970 1984

搜烦问题Q?

1002 1003 1008 1031 1038 1039 1041 1060 1063 1069 1080 1083 1088 1089 1103 1144 1155
1190 1204 1217 1229 1249 1297 1301 1344 1355 1361 1412 1415 1435 1443 1457 1479 1505
1518 1530 1593 1649 1671 1675 1686 1709 1711 1719 1742 1832 1909 1935 1940 1977 1984
2031 2033 2043 2053 2093 2103 2110 2128 2165 2233 2241 2252 2276 2288 2355 2372 2374


2412 2416 2418 2437 2440 2442 2466 2471 2475 2477 2509 2515 2531 2534 2580 2588 2594
2631 2633 2688

数论问题Q?

1007 1028 1088 1113 1133 1160 1222 1278 1284 1312 1314 1385 1489 1526 1530 1569 1577
1596 1601 1652 1657 1712 1797 1842 1889 1906 1951 2000 2022 2028 2060 2095 2105 2156
2189 2212 2233 2277 2288 2305 2316 2320 2330 2360 2371 2400 2410 2414

几何问题Q?

1010 1032 1037 1041 1081 1090 1104 1123 1139 1165 1199 1426 1439 1460 1472 1597 1608
1648 1683 1910 2015 2102 2107 2157 2228 2234 2318 2335 2347 2352 2361 2370 2375 2394
2403

树型l构问题Q?

1011 1038 1043 1062 1141 1159 1167 1203 1319 1335 1387 1406 1481 1511 1542 1586 1610
1635 1674 1700 1752 1788 1805 1809 1900 1944 1955 1959 1965 1990 2243 2425

图表问题Q?

1015 1030 1082 1084 1085 1105 1119 1127 1130 1140 1203 1311 1377 1420 1453 1465 1492
1589 1798 1802 1919 1935 2016 2236 2238 2281 2326

匚w问题Q?

1002 1059 1077 1137 1140 1157 1197 1231 1364 1516 1525 1576 1626 1654 1882 2067 2192
2221 2223 2333 2362 2404


wangs 2012-03-31 22:53 发表评论
]]>
hdu题目分类http://m.shnenglu.com/ArcTan/articles/169715.htmlwangswangsSat, 31 Mar 2012 14:52:00 GMThttp://m.shnenglu.com/ArcTan/articles/169715.htmlhttp://m.shnenglu.com/ArcTan/comments/169715.htmlhttp://m.shnenglu.com/ArcTan/articles/169715.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169715.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169715.html模拟? 枚D
1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 1049 1050 1057 1062 1063 1064 1070 1073 1075 1082 1083 1084 1088 1106 1107 1113 1117 1119 1128 1129 1144 1148 1157 1161 1170 1172 1177 1197 1200 1201 1202 1205 1209 1212(大数取模) 1216Q链表)1218 1219 1225 1228 1229 1230 1234 1235 1236 1237 1239 1250
1256 1259 1262 1263 1265 1266 1276 1279 1282 1283 1287 1296 1302 1303 1304 1305 1306 1309 1311 1314
复杂模拟

搜烦Q递归求解
1010 1016 1026 1043(双广) 1044 (BFS+DFS) 1045 1067 1072 1104 1175 1180 1195 1208 1226 1238 1240 1241 1242 1258 1271 1312 1317
博奕
1079

动态规?br />1003 1024 1025 1028 1051 1058 1059 1069 1074 1078 1080 1081 1085 1087 1114 1158 1159 1160 1171 1176 1181 1203 1224 1227 1231 1244 1248 1253 1254 1283 1300

数学Q递推Q规?br />1005 1006 1012 1014 1018 1019 1021 1023 1027 1030 1032 1038 1041 1046 1059 1060 1061 1065 1066 1071(微积? 1097 1098 1099 1100 1108 1110 1112 1124 1130 1131 1132 1134 1141 1143 1152 1155(物理? 1163 1165 1178 1194 1196(lowbit) 1210 1214 1200 1221 1223 1249 1261 1267 1273 1290 1291 1292 1294 1297 1313 1316
数论
1164 1211 1215 1222 1286 1299

计算几何
1086 1115 1147
贪心
1009 1052 1055 1257

q查?br />1198 1213 1232 1272
U段?L?br />1199 1255
图论
最短\相关的问?1142 1162 1217 1301
二分N?1054 1068 1150 1151 1281
其他
1053 (huffman) 1102(MST) 1116Q欧拉回路) 1233(MST) 1269Q强q通)
数据l构
1103Q堆+模拟Q?166Q数状树l)1247 1251 1285QTopolQ?1298
汉诺塔系?br />1207
最q顶点对 1007


1500 DP
1501 DP
1502 DP or 记忆?br />1503 DP
1504 模拟
1505 DP
1506 DP
1507 2分匹?br />1508 记忆化容易点
1509 模拟
1510 DP
1511 搜烦可以q?br />1512 左偏?br />1513 DP
1514 DP
1515 DFS
1516 DP
1517 博奕
1518 搜烦
1519 DPQ不定Q?br />1520 树状DP
1521 数学题,母函C么的。其实都可以q?br />1522 E_婚姻
1523 DP
1524 博弈
1525 博弈
1526 Maxflow
1527 博弈
1528 2分匹?br />1529 单题
1530 最大团
1531 差分U束
1532 Maxflow 入门?br />1533 KM Or 最费用流
1534 差分U束
1535 差分U束
1536 博弈
1537 模拟 加置换群的理?CODE可以短些Q其实没必要。。?br />1538 很有意思的题目。据说是Microsoft亚洲总裁面试的题?br />1539 搜烦
1540 U段?br />1541 树状数组
1542 LQ线D|
1543 U段?br />1544 单的
1545 DP http://acm.hdu.edu.cn/forum/htm_data/18/0608/2050.html
1546 搜烦
1547 模拟
1548 模拟
1551 2分答?br />1553
1554
1555 ?br />1556 技巧。数?br />1557 搜烦
1558 q查 + U段判交
1559 DP
1560 减支 + 搜烦
1561 树状DP
1562 暴力 between 1000 and 9999
1563 ?br />1564 博弈?br />1565 状态DP
1566 数学
1567 模拟
1568 大数
1569 最割
1570 数学
1571 最D\
1572 搜烦
1573 数学
1574 DP
1575 2?br />1576 数论
1577 模拟Q处理精?br />1579 记忆?br />1580 DP
1582 搜烦
1583 模拟
1584 搜烦
1585
1586
1587 单题?br />1591 模拟
1592 ?br />1593 数学
1594 数学
1595 图论
1596 图论
1597 图论
1598 图论
1599 图论





基础题:1000?001?004?005?008?012?013?014?017?019?021?028?029?032?037?040?048?056?058?061?070?076?089?090?091?092?093?094?095?096?097?098?106?108?157?163?164?170?194?196?197?201?202?205?219?234?235?236?248?266?279?282?283?302?303?323?326?330?334?335?339?390?391?393?395?397?405?406?407?408?412?418?420?465?491?555?562?563?570?587?673?678?708?718?720?785?799?859?862?877?898?976?977?985?994?000?001?002?003?004?005?006?007?008?009?010?011?012?013?014?015?016?017?018?019?020?021?022?023?024?025?026?027?028?029?030?031?032?033?034?035?039?040?042?043?048?049?051?053?055?056?057?060?061?071?073?075?076?078?081?083?088?090?092?093?095?096?097?098?099?101?103?106?107?109?113?114?115?123?131?132?133?135?136?137?138?139?143?148?153?156?161?162?164?178?186?192?200?201?212?304?309?317?401?500?502?503?504?519?520?521?523?524?535?537?539?547?548?549?550?551?552?555?560?561?562?566?567?568?700?710?br />

DPQ?003?024?029?069?074?087?114?159?160?171?176?203?231?257?260?284?421?789?978?059?084?159?191?544?571?602?709?br />
搜烦Q?010?015?016?026?072?075?175?180?181?238?239?240?241?242?253?254?312?372?548?597?671?677?728?800?983?102?141?553?563?605?612?614?616?717

贪心Q?009?045?049?050?051?052?257?800?037?111?124?187?391?570

数学题:1018?065?071?115?141?162?212?220?492?593?701?722?798?840?999?036?080?086?089?105?108?134?303?393?438?529?547?548?552?554?601?603?701?br />
递推Q?133?143?207?249?267?284?290?297?396?992?995?996?013?014?044?045?046?047?050?064?065?067?068?070?077?085?151?154?160?190?501?512?563?569?709?716?br />
字符Ԍ1020?039?043?062?073?075?088?113?161?200?251?256?288?321?328?379?804?860?982?984?017?024?025?026?027?043?052?054?072?074?087?131?137?140?163?203?206?352?500?549?564?565?567?572?609?607?707?708?719?721?723?br />
大数Q?002?042?133?250?297?715?753?865?100?br />
胡搞Q?022?027?030?035?128?165?209?210?215?222?228?229?230?237?259?276?286?337?342?361?370?506?577?597?702?716?727?868?870?896?981?986?987?988?997?998?999?058?062?089?090?094?104?116?117?135?175?183?184?197?303?368?370?374?511?522?527?600?615?703?711?714?715?725?br />
博弈Q?077?404?517?524?525?527?536?564?729?730?846?847?848?849?850?147?149?176?177?188

母函敎ͼ1085?171?398?079?082?110?152?189?566?br />
hashQ?264?280?425?496?800?522?600?br />


wangs 2012-03-31 22:52 发表评论
]]>
poj题目分类http://m.shnenglu.com/ArcTan/articles/169714.htmlwangswangsSat, 31 Mar 2012 14:52:00 GMThttp://m.shnenglu.com/ArcTan/articles/169714.htmlhttp://m.shnenglu.com/ArcTan/comments/169714.htmlhttp://m.shnenglu.com/ArcTan/articles/169714.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169714.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169714.htmlpku题目分类

ȝ题:

1697, 1712, 1713, 1720, 1729, 1765, 1772, 1858, 1872, 1960, 1963, 2050, 2122, 2162, 2219,
2237,

单题目:

1000, 1003, 1004, 1005, 1007, 1046, 1207, 1226, 1401, 1504, 1552, 1607, 1657, 1658, 1674, 1799,
1862, 1906, 1922, 1929, 1931, 1969, 1976, 2000, 2005, 2017, 2027, 2070, 2101, 2105, 2109, 2116,
2136, 2160, 2190, 2232, 2234, 2275, 2301, 2350, 2363, 2389, 2393, 2413, 2419,

推荐Q?

1063, 1064, 1131, 1140, 1715, 2163,

杂题Q?

1014, 1218, 1316, 1455, 1517, 1547, 1580, 1604, 1663, 1678, 1749, 1804, 2013, 2014, 2056, 2059,
2100, 2188, 2189, 2218, 2229, 2249, 2290, 2302, 2304, 2309, 2313, 2316, 2323, 2326, 2368, 2369,
2371, 2402, 2405, 2407,

推荐Q?

1146, 1147, 1148, 1171, 1389, 1433, 1468, 1519, 1631, 1646, 1672, 1681, 1700, 1701, 1705, 1728,
1735, 1736, 1752, 1754, 1755, 1769, 1781, 1787, 1796, 1797, 1833, 1844, 1882, 1933, 1941, 1978,
2128, 2166, 2328, 2383, 2420,

高精度:

1001, 1220, 1405, 1503,

排序Q?

1002, 1318, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 2388, 2418,

推荐Q?

1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380,


搜烦

ҎQ?

1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 1745, 1847, 1915, 1950,
2038, 2157, 2182, 2183, 2381, 2386, 2426,

不易Q?

1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349,

推荐Q?

1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 1753, 1771, 1826,
1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,

数据l构

ҎQ?

1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395,

不易Q?

1145, 1177, 1195, 1227, 1661, 1834,

推荐Q?

1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 2119, 2274,

动态规?

ҎQ?

1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456,
1458, 1609, 1644, 1664, 1690, 1699, 1740, 1742, 1887, 1926, 1936, 1952, 1953, 1958, 1959, 1962,
1975, 1989, 2018, 2029, 2033, 2063, 2081, 2082, 2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346,
2353, 2355, 2356, 2385, 2392, 2424,

不易Q?

1019, 1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707, 1733, 1737, 1837, 1850, 1920,
1934, 1937, 1964, 2039, 2138, 2151, 2161, 2178,

推荐Q?

1015, 1635, 1636, 1671, 1682, 1692, 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019,
2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411,

字符Ԍ

1488, 1598, 1686, 1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 1951, 2003, 2121,
2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408,

贪心Q?

1042, 1065, 1230, 1323, 1477, 1716, 1784,

图论

ҎQ?

1161, 1164, 1258, 1175, 1308, 1364, 1776, 1789, 1861, 1939, 1940, 1943, 2075, 2139, 2387, 2394,
2421,

不易Q?

1041, 1062, 1158, 1172, 1201, 1275, 1718, 1734, 1751, 1904, 1932, 2173, 2175, 2296,

|络:

1087, 1273, 1698, 1815, 2195,

匚wQ?

1274, 1422, 1469, 1719, 2060, 2239,

EulerQ?


1237, 1637, 1394, 2230,

推荐Q?

2049, 2186,

计算几何

ҎQ?

1319, 1654, 1673, 1675, 1836, 2074, 2137, 2318,

不易Q?

1685, 1687, 1696, 1873, 1901, 2172, 2333,

凸包Q?

1113, 1228, 1794, 2007, 2187,

模拟

ҎQ?

1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 1791, 1835, 1970, 2317,
2325, 2390,

不易Q?

1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,

数学

ҎQ?

1061, 1091, 1142, 1289, 1305, 1306, 1320, 1565, 1665, 1666, 1730, 1894, 1914, 2006, 2042, 2142,
2158, 2174, 2262, 2305, 2321, 2348,

不易Q?

1067, 1183, 1430, 1759, 1868, 1942, 2167, 2171, 2327,

推荐Q?

1423, 1450, 1640, 1702, 1710, 1721, 1761, 1830, 1930, 2140,

wangs 2012-03-31 22:52 发表评论
]]>
pojl习题目http://m.shnenglu.com/ArcTan/articles/169712.htmlwangswangsSat, 31 Mar 2012 14:51:00 GMThttp://m.shnenglu.com/ArcTan/articles/169712.htmlhttp://m.shnenglu.com/ArcTan/comments/169712.htmlhttp://m.shnenglu.com/ArcTan/articles/169712.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169712.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169712.html初期:
一.基本法:
(1)枚D. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分L.
(4)递推.
(5)构造法.(poj3295)
(6)模拟?(poj1068,poj2632,poj1573,poj2993,poj2996)

?囄?
(1)囄深度优先遍历和广度优先遍?
(2)最短\径算?dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最生成树法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分囄最大匹?(匈牙利算? (poj3041,poj3020)
(6)最大流的增q\法(KM法). (poj1459,poj3436)
?数据l构.
(1)?(poj1035,poj3080,poj1936)
(2)排序(快排、归q排(与逆序数有?、堆? (poj2388,poj2299)
(3)单ƈ查集的应?
(4)哈希表和二分查找{高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)?br />(7)trie?静态徏树、动态徏? (poj2513)
?单搜?br />(1)深度优先搜烦 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)q度优先搜烦(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)



?动态规?br />(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
?数学
(1)l合数学:
1.加法原理和乘法原?
2.排列l合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问?br />2.q制?
3.同余模运?
(poj2635, poj3292,poj1845,poj2115)
(3)计算Ҏ.
1.二分法求解单调函数相关知?(poj3273,poj3258,poj1905,poj3122)
?计算几何?
(1)几何公式.
(2)叉积和点U的q用(如线D늛交的判定,点到U段的距ȝ). (poj2031,poj1039)
(3)多边型的单算?求面U?和相兛_?点在多边型内,多边型是否相?
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
中:
一.基本法:
(1)C++的标准模版库的应? (poj3096,poj3007)
(2)较ؓ复杂的模拟题的训l?poj3393,poj1472,poj3371,poj1027,poj2706)
?囄?
(1)差分U束pȝ的徏立和求解. (poj1201,poj2983)
(2)最费用最大流(poj2516,poj2516,poj2195)
(3)双连通分?poj2942)
(4)通分支及其羃?(poj2186)
(5)囄割边和割?poj3352)
(6)最割模型、网l流规约(poj3308, )
?数据l构.
(1)U段? (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)q查集的高应用. (poj1703,2492)
(6)KMP法. (poj1961,poj2406)
?搜烦
(1)最优化剪枝和可行性剪?br />(2)搜烦的技巧和优化 (poj3411,poj1724)
(3)记忆化搜?poj3373,poj1691)

?动态规?br />(1)较ؓ复杂的动态规?如动态规划解特别的施行商问题{?
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规? (POJ3254,poj2411,poj1185)
(3)树型动态规?poj2057,poj1947,poj2486,poj3140)
?数学
(1)l合数学:
1.Ҏ原理.
2.抽屉原理.
3.|换与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
(2)数学.
1.高斯消元?poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的Ƨ几里d(中国剩余定理) (poj3101)
(3)计算Ҏ.
1.0/1分数规划. (poj2976)
2.三分法求解单?单谷)的极?
3.矩阵?poj3150,poj3422,poj3070)
4.q代D(poj3301)
(4)随机化算?poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
?计算几何?
(1)坐标L?
(2)扫描U算?例如求矩形的面积和周长ƈ,常和U段树或堆一起?.
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半^面交)(poj3130,poj3335)
(4)几何工具的综合应?(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高:
一.基本法要求:
(1)代码快速写?_但不失风?br />(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效? poj3434
?囄?
(1)度限制最生成树和第K最短\. (poj1639)
(2)最短\,最生成树,二分?最大流问题的相关理?主要是模型徏立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最树形图(poj3164)
(5)ơ小生成?
(6)无向图、有向图的最环
?数据l构.
(1)trie囄建立和应? (poj2778)
(2)LCA和RMQ问题(LCA(最q公q先问? 有离U算?q查?dfs) ?在线法
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应?l护一个单调的队列,常常在动态规划中起到优化状态{Uȝ
目的). (poj2823)
(4)左偏?可合q堆).
(5)后缀?非常有用的数据结?也是赛区考题的热?.
(poj3415,poj3294)
?搜烦
(1)较麻烦的搜烦题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)q搜的状态优?利用Mq制数存储状态、{化ؓ串用hash表判重、按位压~存储状态、双向广

搜、A*法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的优?量用位q算、一定要加剪枝、函数参数尽可能、层C易过大、可以考虑双向

搜烦或者是轮换搜烦、IDA*法. (poj3131,poj2870,poj2286)
?动态规?br />(1)需要用数据l构优化的动态规?
(poj2754,poj3378,poj3017)
(2)四边形不{式理论.
(3)较难的状态DP(poj3133)
?数学
(1)l合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕?
1.极大极小q程(poj3317,poj1085)
2.Nim问题.
?计算几何?
(1)半^面求?poj3384,poj2540)
(2)可视囄建立(poj2966)
(3)炚w最圆覆盖.
(4)对踵?poj2079)
?l合?
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)

wangs 2012-03-31 22:51 发表评论
]]>
hdul习题目http://m.shnenglu.com/ArcTan/articles/169713.htmlwangswangsSat, 31 Mar 2012 14:51:00 GMThttp://m.shnenglu.com/ArcTan/articles/169713.htmlhttp://m.shnenglu.com/ArcTan/comments/169713.htmlhttp://m.shnenglu.com/ArcTan/articles/169713.html#Feedback0http://m.shnenglu.com/ArcTan/comments/commentRss/169713.htmlhttp://m.shnenglu.com/ArcTan/services/trackbacks/169713.html模拟? 枚D
1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 1049 1050 1057 1062 1063 1064 1070 1073 1075 1082 1083 1084 1088 1106 1107 1113 1117 1119 1128 1129 1144 1148 1157 1161 1170 1172 1177 1197 1200 1201 1202 1205 1209 1212(大数取模) 1216Q链表)1218 1219 1225 1228 1229 1230 1234 1235 1236 1237 1239 1250
1256 1259 1262 1263 1265 1266 1276 1279 1282 1283 1287 1296 1302 1303 1304 1305 1306 1309 1311 1314
复杂模拟

搜烦Q递归求解
1010 1016 1026 1043(双广) 1044 (BFS+DFS) 1045 1067 1072 1104 1175 1180 1195 1208 1226 1238 1240 1241 1242 1258 1271 1312 1317

博奕
1079

动态规?br />1003 1024 1025 1028 1051 1058 1059 1069 1074 1078 1080 1081 1085 1087 1114 1158 1159 1160 1171 1176 1181 1203 1224 1227 1231 1244 1248 1253 1254 1283 1300

数学Q递推Q规?br />1005 1006 1012 1014 1018 1019 1021 1023 1027 1030 1032 1038 1041 1046 1059 1060 1061 1065 1066 1071(微积? 1097 1098 1099 1100 1108 1110 1112 1124 1130 1131 1132 1134 1141 1143 1152 1155(物理? 1163 1165 1178 1194 1196(lowbit) 1210 1214 1200 1221 1223 1249 1261 1267 1273 1290 1291 1292 1294 1297 1313 1316
数论
1164 1211 1215 1222 1286 1299

计算几何
1086 1115 1147
贪心
1009 1052 1055 1257

q查?br />1198 1213 1232 1272
U段?L?br />1199 1255
图论
最短\相关的问?1142 1162 1217 1301
二分N?1054 1068 1150 1151 1281
其他
1053 (huffman) 1102(MST) 1116Q欧拉回路) 1233(MST) 1269Q强q通)
数据l构
1103Q堆+模拟Q?166Q数状树l)1247 1251 1285QTopolQ?1298
汉诺塔系?br />1207
最q顶点对 1007


1500 DP
1501 DP
1502 DP or 记忆?br />1503 DP
1504 模拟
1505 DP
1506 DP
1507 2分匹?br />1508 记忆化容易点
1509 模拟
1510 DP
1511 搜烦可以q?br />1512 左偏?br />1513 DP
1514 DP
1515 DFS
1516 DP
1517 博奕
1518 搜烦
1519 DPQ不定Q?br />1520 树状DP
1521 数学题,母函C么的。其实都可以q?br />1522 E_婚姻
1523 DP
1524 博弈
1525 博弈
1526 Maxflow
1527 博弈
1528 2分匹?br />1529 单题
1530 最大团
1531 差分U束
1532 Maxflow 入门?br />1533 KM Or 最费用流
1534 差分U束
1535 差分U束
1536 博弈
1537 模拟 加置换群的理?CODE可以短些Q其实没必要。。?br />1538 很有意思的题目。据说是Microsoft亚洲总裁面试的题?br />1539 搜烦
1540 U段?br />1541 树状数组
1542 LQ线D|
1543 U段?br />1544 单的
1545 DP http://acm.hdu.edu.cn/forum/htm_data/18/0608/2050.html
1546 搜烦
1547 模拟
1548 模拟
1551 2分答?br />1553
1554
1555 ?br />1556 技巧。数?br />1557 搜烦
1558 q查 + U段判交
1559 DP
1560 减支 + 搜烦
1561 树状DP
1562 暴力 between 1000 and 9999
1563 ?br />1564 博弈?br />1565 状态DP
1566 数学
1567 模拟
1568 大数
1569 最割
1570 数学
1571 最D\
1572 搜烦
1573 数学
1574 DP
1575 2?br />1576 数论
1577 模拟Q处理精?br />1579 记忆?br />1580 DP
1582 搜烦
1583 模拟
1584 搜烦
1585
1586
1587 单题?br />1591 模拟
1592 ?br />1593 数学
1594 数学
1595 图论
1596 图论
1597 图论
1598 图论
1599 图论





基础题:1000?001?004?005?008?012?013?014?017?019?021?028?029?032?037?040?048?056?058?061?070?076?089?090?091?092?093?094?095?096?097?098?106?108?157?163?164?170?194?196?197?201?202?205?219?234?235?236?248?266?279?282?283?302?303?323?326?330?334?335?339?390?391?393?395?397?405?406?407?408?412?418?420?465?491?555?562?563?570?587?673?678?708?718?720?785?799?859?862?877?898?976?977?985?994?000?001?002?003?004?005?006?007?008?009?010?011?012?013?014?015?016?017?018?019?020?021?022?023?024?025?026?027?028?029?030?031?032?033?034?035?039?040?042?043?048?049?051?053?055?056?057?060?061?071?073?075?076?078?081?083?088?090?092?093?095?096?097?098?099?101?103?106?107?109?113?114?115?123?131?132?133?135?136?137?138?139?143?148?153?156?161?162?164?178?186?192?200?201?212?304?309?317?401?500?502?503?504?519?520?521?523?524?535?537?539?547?548?549?550?551?552?555?560?561?562?566?567?568?700?710?br />

DPQ?003?024?029?069?074?087?114?159?160?171?176?203?231?257?260?284?421?789?978?059?084?159?191?544?571?602?709?br />
搜烦Q?010?015?016?026?072?075?175?180?181?238?239?240?241?242?253?254?312?372?548?597?671?677?728?800?983?102?141?553?563?605?612?614?616?717

贪心Q?009?045?049?050?051?052?257?800?037?111?124?187?391?570

数学题:1018?065?071?115?141?162?212?220?492?593?701?722?798?840?999?036?080?086?089?105?108?134?303?393?438?529?547?548?552?554?601?603?701?br />
递推Q?133?143?207?249?267?284?290?297?396?992?995?996?013?014?044?045?046?047?050?064?065?067?068?070?077?085?151?154?160?190?501?512?563?569?709?716?br />
字符Ԍ1020?039?043?062?073?075?088?113?161?200?251?256?288?321?328?379?804?860?982?984?017?024?025?026?027?043?052?054?072?074?087?131?137?140?163?203?206?352?500?549?564?565?567?572?609?607?707?708?719?721?723?br />
大数Q?002?042?133?250?297?715?753?865?100?br />
胡搞Q?022?027?030?035?128?165?209?210?215?222?228?229?230?237?259?276?286?337?342?361?370?506?577?597?702?716?727?868?870?896?981?986?987?988?997?998?999?058?062?089?090?094?104?116?117?135?175?183?184?197?303?368?370?374?511?522?527?600?615?703?711?714?715?725?br />
博弈Q?077?404?517?524?525?527?536?564?729?730?846?847?848?849?850?147?149?176?177?188

母函敎ͼ1085?171?398?079?082?110?152?189?566?br />
hashQ?264?280?425?496?800?522?600?br />


wangs 2012-03-31 22:51 发表评论
]]>
þҹɫƷAV| þþþþۺһĻ| ˺ݺۺϾþ޸| þۺƵվ| þþƷŷպƷ| 㽶þҹɫƷС˵| þþþƷ| Ʒþһ| ޹պŷþ| þþþAVרJN| ɫAVԾþþþþ| þþþëƬ| ˾þۺ| þwww˳ɿƬ| þþþþƷAV| 91ƷۺϾþ| þҹƵ| Ʒþþþþ| þˬˬƬAV| þùAVJUST鶹| ƷŷƬþùŷ...| ˳ɾƷþþþ| þAV| ˾þü91| ۺպþóAV| ۿƷþ| þþ޾Ʒһ| þ777߿ۿƷ| þۺϺݺۺϾþۺ88| ҹƵþþþһ| þþþþྫƷֱ| 鶹wwwþ| þþþþþۺ| þAVӰ| þó˹Ʒ| ŷ˾þô߽ۺ69| þþѹ۳ӰԺ| þþþƷ| þþù| Ʒ99þþƷ| þwww˳ɿƬ|