• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 74,  comments - 33,  trackbacks - 0
            Taxi

            Time Limit: 1 Second ???? Memory Limit: 32768 KB

            As we all know, it often rains suddenly in Hangzhou during summer time.I suffered a heavy rain when I was walking on the street yesterday, so I decided to take a taxi back school. I found that there were n people on the street trying to take taxis, and m taxicabs on the street then. Supposing that the cars waited still and each person walked at a speed of v, now given the positions of the n persons and the m taxicabs, you should find the minimum time needed for all the persons to get on the taxicabs. Assume that no two people got on the same taxicab.

            Input

            For each case, you are given two integers 0 <= n <= 100 and n <= m <= 100 on the first line, then n lines, each has two integers 0 <= Xi, Yi <= 1000000 describing the position of the ith person, then m lines, each has two integers 0 <= xi, yi <= 1000000 describing the position the ith taxicab, then a line has a float 0.00001 < v <= 10000000 which is the speed of the people.

            Output

            You shuold figue out one float rounded to two decimal digits for each case.

            Sample Input

            2 3
            0 0
            0 1
            1 0
            1 1
            2 1
            1
            

            Sample Output

            1.00
            本來以為是dp求解的,后來誤以為KM做了一下,無果,后來想了想類似Max_Match搜索TLE
            后來找到了這句話
            -----------------------------------------------------------------------
            n個(gè)人乘坐m個(gè)的(dˉe),已知人和的的坐標(biāo)和人的速度,問每個(gè)人都打上
            的的最短時(shí)間。假設(shè)的的位置不能變且沒有兩個(gè)人打同一個(gè)的。
            假設(shè)T時(shí)間內(nèi)大家都可以打上的,那么對于t > T的時(shí)間,大家也可以
            打上的。因此,問題可以二分求解。
            對于給定的T,如果人可以在該時(shí)間內(nèi)走到某個(gè)的的位置,就在人和的
            之間連一條邊。于是問題的可行就要求該二分圖的最大匹配數(shù)等于n。求
            二分圖最大匹配可以用Hungary算法。


            ----------------------------------------------------------------
            來源:http://cuitianyi.com/ZOJ200901.pdf
            就居然明白了原來類最小最優(yōu)比例生成樹,我二分的時(shí)候是利用最大時(shí)間上限t二分 每次原圖中T<=t建圖得到
            邊 1 ,否則無邊。。結(jié)構(gòu)很無情TLE,看了一下數(shù)據(jù)范圍 1000000 0.00001 < v <= 10000000 郁悶。
            隨后改成把所有時(shí)間存儲(chǔ)在Time數(shù)組中然后在數(shù)組中二分 不幸的是CE。Faint?。?br />原來是自己用了link做了數(shù)組標(biāo)號,而C++優(yōu)link函數(shù)。。。。。。A的很曲折。膜拜大牛的解題報(bào)告給了二分的思路
            (今天我是想不到)
            部分代碼如下:
            double?dis(NODE?a,NODE?b){
            ????
            return?sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));????
            }

            bool?DFS(int?x){
            ????
            for(int?i=0;i<m;i++)
            ????????
            if(mark[x][i]&&!visited[i]){
            ????????????visited[i]
            =true;
            ????????????
            if(linkn[i]==-1||DFS(linkn[i])){
            ????????????????linkn[i]
            =x;
            ????????????????
            return?true;????
            ????????????}
            ????
            ????????}

            ????
            return?false;????????
            }

            bool?Max_Match(){
            ????
            int?i,sum=0;
            ????memset(linkn,
            0xff,sizeof(linkn));
            ????
            for(i=0;i<n;i++){
            ????????memset(visited,
            0,sizeof(visited));
            ????????DFS(i);
            ????}

            ????
            for(i=0;i<m;i++)
            ????????
            if(linkn[i]!=-1)sum++;
            ????
            if(sum==n)return?true;
            ????
            else?return?false;????
            }

            void?change(double?x){
            ????
            for(int?i=0;i<n;i++)
            ????????
            for(int?j=0;j<m;j++)
            ????????????
            if(x>=map[i][j])mark[i][j]=true;
            ????????????
            else?mark[i][j]=false;????
            }
            posted on 2009-04-17 14:32 KNIGHT 閱讀(164) 評論(0)  編輯 收藏 引用
            <2009年2月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            1234567

            常用鏈接

            留言簿(8)

            隨筆檔案

            文章檔案

            Friends

            OJ

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            日韩va亚洲va欧美va久久| 久久国产色AV免费观看| 久久夜色精品国产www| 国产激情久久久久影院老熟女免费| www久久久天天com| 久久久精品波多野结衣| 亚洲国产精品久久久天堂| 精品国产一区二区三区久久蜜臀| 久久国产免费直播| 51久久夜色精品国产| 狠狠色婷婷久久综合频道日韩 | 久久99久国产麻精品66| 91久久精品国产成人久久| 亚洲午夜久久久影院伊人| 国内精品欧美久久精品| 97超级碰碰碰久久久久| 国内精品九九久久精品| 亚洲国产精品成人久久蜜臀| 国产一区二区精品久久| 久久ww精品w免费人成| 久久精品国产亚洲av麻豆蜜芽 | 久久久久无码精品| 国产成人精品久久综合| 99久久精品午夜一区二区 | 久久精品国产99国产精品导航| 国内精品伊人久久久久影院对白| 久久久噜噜噜久久中文福利| 色综合久久中文字幕无码| 久久国语露脸国产精品电影| 久久天天躁夜夜躁狠狠| 国产精品99久久久精品无码| 国产精品成人久久久| 亚洲伊人久久成综合人影院 | 久久久久这里只有精品| 国产精品xxxx国产喷水亚洲国产精品无码久久一区| 久久久这里只有精品加勒比| 久久久久久久久久久精品尤物| 亚洲精品tv久久久久久久久| 久久强奷乱码老熟女网站| 人妻无码精品久久亚瑟影视| 欧美va久久久噜噜噜久久|