• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 74,  comments - 33,  trackbacks - 0
            Taxi

            Time Limit: 1 Second ???? Memory Limit: 32768 KB

            As we all know, it often rains suddenly in Hangzhou during summer time.I suffered a heavy rain when I was walking on the street yesterday, so I decided to take a taxi back school. I found that there were n people on the street trying to take taxis, and m taxicabs on the street then. Supposing that the cars waited still and each person walked at a speed of v, now given the positions of the n persons and the m taxicabs, you should find the minimum time needed for all the persons to get on the taxicabs. Assume that no two people got on the same taxicab.

            Input

            For each case, you are given two integers 0 <= n <= 100 and n <= m <= 100 on the first line, then n lines, each has two integers 0 <= Xi, Yi <= 1000000 describing the position of the ith person, then m lines, each has two integers 0 <= xi, yi <= 1000000 describing the position the ith taxicab, then a line has a float 0.00001 < v <= 10000000 which is the speed of the people.

            Output

            You shuold figue out one float rounded to two decimal digits for each case.

            Sample Input

            2 3
            0 0
            0 1
            1 0
            1 1
            2 1
            1
            

            Sample Output

            1.00
            本來以為是dp求解的,后來誤以為KM做了一下,無果,后來想了想類似Max_Match搜索TLE
            后來找到了這句話
            -----------------------------------------------------------------------
            n個(gè)人乘坐m個(gè)的(dˉe),已知人和的的坐標(biāo)和人的速度,問每個(gè)人都打上
            的的最短時(shí)間。假設(shè)的的位置不能變且沒有兩個(gè)人打同一個(gè)的。
            假設(shè)T時(shí)間內(nèi)大家都可以打上的,那么對于t > T的時(shí)間,大家也可以
            打上的。因此,問題可以二分求解。
            對于給定的T,如果人可以在該時(shí)間內(nèi)走到某個(gè)的的位置,就在人和的
            之間連一條邊。于是問題的可行就要求該二分圖的最大匹配數(shù)等于n。求
            二分圖最大匹配可以用Hungary算法。


            ----------------------------------------------------------------
            來源:http://cuitianyi.com/ZOJ200901.pdf
            就居然明白了原來類最小最優(yōu)比例生成樹,我二分的時(shí)候是利用最大時(shí)間上限t二分 每次原圖中T<=t建圖得到
            邊 1 ,否則無邊。。結(jié)構(gòu)很無情TLE,看了一下數(shù)據(jù)范圍 1000000 0.00001 < v <= 10000000 郁悶。
            隨后改成把所有時(shí)間存儲(chǔ)在Time數(shù)組中然后在數(shù)組中二分 不幸的是CE。Faint!!
            原來是自己用了link做了數(shù)組標(biāo)號(hào),而C++優(yōu)link函數(shù)。。。。。。A的很曲折。膜拜大牛的解題報(bào)告給了二分的思路
            (今天我是想不到)
            部分代碼如下:
            double?dis(NODE?a,NODE?b){
            ????
            return?sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));????
            }

            bool?DFS(int?x){
            ????
            for(int?i=0;i<m;i++)
            ????????
            if(mark[x][i]&&!visited[i]){
            ????????????visited[i]
            =true;
            ????????????
            if(linkn[i]==-1||DFS(linkn[i])){
            ????????????????linkn[i]
            =x;
            ????????????????
            return?true;????
            ????????????}
            ????
            ????????}

            ????
            return?false;????????
            }

            bool?Max_Match(){
            ????
            int?i,sum=0;
            ????memset(linkn,
            0xff,sizeof(linkn));
            ????
            for(i=0;i<n;i++){
            ????????memset(visited,
            0,sizeof(visited));
            ????????DFS(i);
            ????}

            ????
            for(i=0;i<m;i++)
            ????????
            if(linkn[i]!=-1)sum++;
            ????
            if(sum==n)return?true;
            ????
            else?return?false;????
            }

            void?change(double?x){
            ????
            for(int?i=0;i<n;i++)
            ????????
            for(int?j=0;j<m;j++)
            ????????????
            if(x>=map[i][j])mark[i][j]=true;
            ????????????
            else?mark[i][j]=false;????
            }
            posted on 2009-04-17 14:32 KNIGHT 閱讀(161) 評(píng)論(0)  編輯 收藏 引用

            只有注冊用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            <2009年3月>
            22232425262728
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            常用鏈接

            留言簿(8)

            隨筆檔案

            文章檔案

            Friends

            OJ

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            久久经典免费视频| 久久精品国产91久久综合麻豆自制| 九九精品99久久久香蕉| 高清免费久久午夜精品| 亚洲国产精久久久久久久| 欧美激情精品久久久久久久| 久久综合九色综合网站| 久久狠狠色狠狠色综合| 波多野结衣久久| 精品久久久久久亚洲| 亚洲日韩欧美一区久久久久我| 色综合久久久久无码专区| 99久久无码一区人妻| 伊人久久大香线蕉av一区| 91久久精品电影| 亚洲国产精品久久电影欧美| 久久久久久A亚洲欧洲AV冫| 三上悠亚久久精品| 久久精品夜色噜噜亚洲A∨| 久久久久亚洲精品无码蜜桃 | 久久午夜免费视频| 成人国内精品久久久久影院| 久久只这里是精品66| 久久久久国产精品嫩草影院| 久久久av波多野一区二区| 亚洲午夜久久久| 久久午夜综合久久| 久久精品国产黑森林| 99久久亚洲综合精品成人| 国产亚洲精品美女久久久| 国产成人精品综合久久久| 亚洲精品综合久久| 久久久青草青青国产亚洲免观| 国内精品久久久久久野外| 国产精品免费福利久久| 日韩精品久久无码人妻中文字幕| 国内精品久久久久影院老司| 久久精品免费全国观看国产| 久久综合久久综合亚洲| 久久婷婷五月综合色奶水99啪| 色综合久久88色综合天天 |