• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Life is Good.

            Enhance Tech and English
            隨筆 - 65, 文章 - 20, 評(píng)論 - 21, 引用 - 0
            數(shù)據(jù)加載中……

            Boosting Lisp performance - cons vs append and foreach vs while/nth

            From our PD- Nate Holt:

            All,

             More and more of you are finding that you have to deal with this goofy language called AutoLISP. Here are a couple items I pulled together related to some lisp “best practices”. Both apply to optimizing performance when processing large “lists” of data.

            Thanks,

            Nate.

                CONS versus APPEND

            The cons function adds an element to the beginning of a list. The append function can be used to give the equivalent of adding an element to the beginning or end of a list.

            Using the cons function can be MUCH faster than using append to build up a large list.

            We'll run two tests to create a dummy list of 10,000 integer numbers. The first test is using the "cons" function. Appload and type test1 [enter] at the command prompt.

            (defun c:test1 ( / )
              (setq i 1)
              (setq lst nil) ; start out with a blank list
              (repeat 10000
                (setq lst (cons i lst)) ; add next element to beginning of list
                (setq i (1+ i))
              )
              (setq lst (reverse lst)) ; put list back into correct order
              (princ)
            )

            The second test yields the same result but uses the "append" function:

            (defun c:test2 ( / )
              (setq i 1)
              (setq lst nil) ; start out with a blank list
              (repeat 10000
                (setq lst (append lst (list i))) ; append next element on to end of list
                (setq i (1+ i))
              )
              (princ)
            )

            The first test using "cons" builds the 10,000 element list in memory in less than 0.01 seconds (on my T61p).The second test using "append" builds the exact same 10,000 element list in memory but takes a full 3.55 seconds to execute ( ! ). Dealing with large lists, it appears that the "cons" function is many, many times faster.

            ·         FOREACH versus WHILE / NTH

            Let's say you need to cycle through a huge list, one list element at a time. There are two different functions that can cycle through a list, "foreach" and "nth" combined with a "while" loop. When dealing with a very large list, the "foreach" function can be much faster than using a while loop / nth function to index through the list.

            These tests use the 10,000 element list held in memory created be either of the above two tests. This next test uses "foreach" to cycle through the 10,000 element list.

            (defun c:test3 ( / )
              ; use 10,000 element "lst" created by test1 or test2
              (setq find_int (getint "\nFind integer="))
              (setq foundit nil)
              (foreach x lst
                (if (AND (not foundit) (= x find_int))
                  (progn
                    (setq foundit T)
                    (princ " found") 
                ) )   
              )
              (princ)
            )

            This next test does the same thing but uses a "while" loop and the "nth" function to index its way through the 10,000 element list:

            (defun c:test4 ( / )
              ; use 10,000 element "lst" created by test1 or test2
              (setq find_int (getint "\nFind integer="))
              (setq foundit nil)
              (setq ix 0)
              (setq slen (length lst))
              (while (AND (not foundit)(< ix slen))
                (if (= (nth ix lst) find_int) ; look for match
                  (progn ; Found the target element
                    (setq foundit T)
                    (princ " found") 
                ) )
                (setq ix (1+ ix))  
              )
              (princ)
            )

            For the test, looking for integer value 5000 (halfway into the list). The "foreach" function finds and exits in less than 0.01 second. The while loop using the "nth" function finds and exits in 0.07 seconds. Using foreach is significantly faster in processing this large list.

            posted on 2008-11-10 10:49 Mike Song 閱讀(353) 評(píng)論(0)  編輯 收藏 引用


            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            亚洲精品乱码久久久久久自慰| 久久精品免费一区二区| 精品久久香蕉国产线看观看亚洲| 久久精品国产清高在天天线| 国产一级持黄大片99久久| 久久强奷乱码老熟女网站| 无码日韩人妻精品久久蜜桃| 99久久精品国内| 久久影视国产亚洲| 久久棈精品久久久久久噜噜| 久久精品国产亚洲Aⅴ蜜臀色欲| 久久这里只有精品首页| 国产高潮久久免费观看| 亚洲AV日韩精品久久久久久| 国产99久久九九精品无码| 亚洲日本va中文字幕久久| 久久国产免费直播| 久久99国产亚洲高清观看首页| 色播久久人人爽人人爽人人片aV| 性高湖久久久久久久久| 综合久久精品色| 青草久久久国产线免观| 久久精品国产精品亜洲毛片| 久久亚洲国产精品一区二区| 久久不见久久见免费视频7| 久久91精品国产91| 日本久久中文字幕| 久久亚洲天堂| 久久高潮一级毛片免费| 丁香久久婷婷国产午夜视频| 色成年激情久久综合| 久久精品男人影院| 国产69精品久久久久777| jizzjizz国产精品久久| 99久久婷婷免费国产综合精品| 久久人做人爽一区二区三区| 日韩欧美亚洲综合久久| 亚洲伊人久久综合中文成人网| 久久人人爽人人爽AV片| 亚洲国产成人久久笫一页| 手机看片久久高清国产日韩|