• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            數據加載中……

            URAL 1018 A Binary Apple Tree

            A Binary Apple Tree


            Time Limit: 1.0 second
            Memory Limit: 16 MB
            Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by natural numbers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
            2   5
            \ /
            3 4
            \ /
            1
            As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

            Input

            First line of input contains two numbers: N and Q (1 ≤ QN; 1 < N ≤ 100). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N−1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

            Output

            Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

            Sample

            input output
            5 2
            1 3 1
            1 4 10
            2 3 20
            3 5 20
                                             21

            簡析:
                  這是一個簡單的樹形動態規劃問題,大概可以拿來當這類題目的入門訓練題.雖然這是URAL上的第一個樹形DP,但是我奇怪的是它的通過率并不很高.
                  對于原題目的圖形,用數組value[a][b]表示a,b點間蘋果的個數,用nd[p].L,nd[p].R分別表示節點p的左右兒子.通過build_tree(1)獲得數組nd[],從而獲得整棵樹的信息.
            接著,用ans[p][i]表示以節點p為祖宗的子樹,保留的枝條不超過i條時所能保留的最多的蘋果,狀態轉移有一下幾種情況.
            在除去多余枝條的后的圖中,
            1.  p只與一個兒子相連:
                ans[p][i]=max(ans[left_son][i-1]+value[left_son][p],ans[right_son][i-1]+value[right_son][p]);
            2.  p與兩個兒子相連:
                for (int j=0;j<=i-2;++j)
                  ans[p][i]=max(ans[p][i],ans[left_son][j]+ans[right_son][i-j-2]+d); 
                這里,d=value[left_son][p]+value[right_son][p];

            算法在o(N*Q*Q)級別
             1 #include<iostream>
             2 using namespace std;
             3 const int MAXN=102;
             4 int n,q,value[MAXN][MAXN],ans[MAXN][MAXN];
             5 struct node
             6 {
             7   int l,r;
             8 }nd[MAXN];
             9 
            10 void build_tree(int p)
            11 {
            12   int flg=0;
            13   for (int i=1;i<=n;++i)
            14     if (value[p][i] && (!nd[i].l))
            15       {
            16     flg=1;
            17     if (nd[p].l==0) nd[p].l=i;
            18     else
            19       {nd[p].r=i; break;}
            20       }
            21   if (!flg) return;
            22   if (nd[p].l) build_tree(nd[p].l);
            23   if (nd[p].r) build_tree(nd[p].r);
            24 }
            25 
            26 void calc(int p)
            27 {
            28   if (!nd[p].l) return;
            29   int l=nd[p].l,r=nd[p].r;
            30   calc(l);
            31   calc(r);
            32   ans[p][1]=max(value[l][p],value[r][p]);
            33 
            34   int d=value[l][p]+value[r][p];
            35   for (int i=2;i<=q;++i)
            36   {  
            37     ans[p][i]=max(ans[l][i-1]+value[l][p],ans[r][i-1]+value[r][p]);
            38     for (int j=0;j<=i-2;++j)
            39       ans[p][i]=max(ans[p][i],ans[l][j]+ans[r][i-j-2]+d);
            40   }
            41 }
            42 
            43 
            44 int main()
            45 {
            46   //freopen("data.in","r",stdin);
            47   //freopen("data.out","w",stdout);
            48   cin >> n >> q;
            49   memset(value,0,sizeof(value));
            50   for (int i=1;i<n;++i)
            51     {
            52       int a,b,c;
            53       cin >> a >> b >> c;
            54       value[a][b]=c;
            55       value[b][a]=c;
            56     }
            57   memset(nd,0,sizeof(nd));
            58   build_tree(1);
            59   calc(1);
            60   cout << ans[1][q] << endl;
            61   return 0;
            62 }
            63 



            posted on 2009-07-19 23:02 Chen Jiecao 閱讀(489) 評論(0)  編輯 收藏 引用 所屬分類: URAL

            久久精品国产亚洲AV忘忧草18| 久久国产精品久久久| 久久青青草原亚洲av无码| 久久亚洲2019中文字幕| 午夜视频久久久久一区 | 亚洲国产精品久久久久久| 久久精品国产一区| 久久综合久久伊人| 伊人久久精品无码av一区| 99久久免费国产精精品| 欧美激情精品久久久久久| 久久久久亚洲AV无码麻豆| 久久91这里精品国产2020| 99久久精品免费看国产一区二区三区| 69久久精品无码一区二区| 久久久黄片| 99久久成人18免费网站| 久久亚洲精品成人av无码网站| 一本久久免费视频| 精品国产婷婷久久久| 国产精品久久久久久一区二区三区| 手机看片久久高清国产日韩| 777久久精品一区二区三区无码| 久久亚洲AV成人无码电影| 精品久久久久久久国产潘金莲| 久久久精品人妻无码专区不卡 | av色综合久久天堂av色综合在 | 久久精品国产亚洲AV蜜臀色欲| 九九久久精品无码专区| 国产精品青草久久久久福利99 | 亚洲色大成网站WWW久久九九| 久久久久久毛片免费看| 国产高清美女一级a毛片久久w| 久久精品国产久精国产| 国产精品免费看久久久| 久久综合香蕉国产蜜臀AV| 亚洲色欲久久久综合网| 久久综合狠狠综合久久综合88| 色88久久久久高潮综合影院| 中文字幕久久波多野结衣av| 天堂久久天堂AV色综合|