• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            數據加載中……

            URAL 1018 A Binary Apple Tree

            A Binary Apple Tree


            Time Limit: 1.0 second
            Memory Limit: 16 MB
            Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by natural numbers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
            2   5
            \ /
            3 4
            \ /
            1
            As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

            Input

            First line of input contains two numbers: N and Q (1 ≤ QN; 1 < N ≤ 100). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N−1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

            Output

            Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

            Sample

            input output
            5 2
            1 3 1
            1 4 10
            2 3 20
            3 5 20
                                             21

            簡析:
                  這是一個簡單的樹形動態規劃問題,大概可以拿來當這類題目的入門訓練題.雖然這是URAL上的第一個樹形DP,但是我奇怪的是它的通過率并不很高.
                  對于原題目的圖形,用數組value[a][b]表示a,b點間蘋果的個數,用nd[p].L,nd[p].R分別表示節點p的左右兒子.通過build_tree(1)獲得數組nd[],從而獲得整棵樹的信息.
            接著,用ans[p][i]表示以節點p為祖宗的子樹,保留的枝條不超過i條時所能保留的最多的蘋果,狀態轉移有一下幾種情況.
            在除去多余枝條的后的圖中,
            1.  p只與一個兒子相連:
                ans[p][i]=max(ans[left_son][i-1]+value[left_son][p],ans[right_son][i-1]+value[right_son][p]);
            2.  p與兩個兒子相連:
                for (int j=0;j<=i-2;++j)
                  ans[p][i]=max(ans[p][i],ans[left_son][j]+ans[right_son][i-j-2]+d); 
                這里,d=value[left_son][p]+value[right_son][p];

            算法在o(N*Q*Q)級別
             1 #include<iostream>
             2 using namespace std;
             3 const int MAXN=102;
             4 int n,q,value[MAXN][MAXN],ans[MAXN][MAXN];
             5 struct node
             6 {
             7   int l,r;
             8 }nd[MAXN];
             9 
            10 void build_tree(int p)
            11 {
            12   int flg=0;
            13   for (int i=1;i<=n;++i)
            14     if (value[p][i] && (!nd[i].l))
            15       {
            16     flg=1;
            17     if (nd[p].l==0) nd[p].l=i;
            18     else
            19       {nd[p].r=i; break;}
            20       }
            21   if (!flg) return;
            22   if (nd[p].l) build_tree(nd[p].l);
            23   if (nd[p].r) build_tree(nd[p].r);
            24 }
            25 
            26 void calc(int p)
            27 {
            28   if (!nd[p].l) return;
            29   int l=nd[p].l,r=nd[p].r;
            30   calc(l);
            31   calc(r);
            32   ans[p][1]=max(value[l][p],value[r][p]);
            33 
            34   int d=value[l][p]+value[r][p];
            35   for (int i=2;i<=q;++i)
            36   {  
            37     ans[p][i]=max(ans[l][i-1]+value[l][p],ans[r][i-1]+value[r][p]);
            38     for (int j=0;j<=i-2;++j)
            39       ans[p][i]=max(ans[p][i],ans[l][j]+ans[r][i-j-2]+d);
            40   }
            41 }
            42 
            43 
            44 int main()
            45 {
            46   //freopen("data.in","r",stdin);
            47   //freopen("data.out","w",stdout);
            48   cin >> n >> q;
            49   memset(value,0,sizeof(value));
            50   for (int i=1;i<n;++i)
            51     {
            52       int a,b,c;
            53       cin >> a >> b >> c;
            54       value[a][b]=c;
            55       value[b][a]=c;
            56     }
            57   memset(nd,0,sizeof(nd));
            58   build_tree(1);
            59   calc(1);
            60   cout << ans[1][q] << endl;
            61   return 0;
            62 }
            63 



            posted on 2009-07-19 23:02 Chen Jiecao 閱讀(487) 評論(0)  編輯 收藏 引用 所屬分類: URAL

            97久久精品人人澡人人爽| 亚洲国产成人久久精品动漫| 色播久久人人爽人人爽人人片aV | 久久无码高潮喷水| 女人香蕉久久**毛片精品| 久久久久人妻一区二区三区| 精品久久777| 日本强好片久久久久久AAA| 99久久综合国产精品二区| 久久久久久久波多野结衣高潮| 久久ZYZ资源站无码中文动漫| 激情综合色综合久久综合| 国产成人久久精品激情| 精品人妻伦九区久久AAA片69| 精品国产乱码久久久久久1区2区| 午夜福利91久久福利| 久久精品国产一区二区| 色综合久久综精品| 国产精品99久久久久久董美香 | 性高湖久久久久久久久| 狠狠色综合网站久久久久久久高清| 亚洲国产精品成人久久蜜臀 | 久久综合九色综合网站| 久久精品嫩草影院| 久久久精品久久久久特色影视| 久久AAAA片一区二区| 久久综合亚洲鲁鲁五月天| 精品久久久久久无码专区| 国产免费久久精品99久久| 日韩精品久久久久久久电影| 久久国产精品无码HDAV| 久久99精品久久久久久噜噜| yy6080久久| 亚洲欧美精品一区久久中文字幕| 精品无码久久久久国产动漫3d| 四虎国产精品免费久久5151| 久久久久精品国产亚洲AV无码 | 成人综合伊人五月婷久久| 色偷偷88欧美精品久久久 | 2020久久精品国产免费| 2020久久精品亚洲热综合一本|