• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            Tim's Programming Space  
            Tim's Programming Space
            日歷
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345
            統計
            • 隨筆 - 20
            • 文章 - 1
            • 評論 - 40
            • 引用 - 0

            導航

            常用鏈接

            留言簿(3)

            隨筆檔案

            文章檔案

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

             
            http://acm.pku.edu.cn/JudgeOnline/problem?id=1739
            基于連通性狀態壓縮的動態規劃(名字真長- -!)其實不算太難,以前都被它嚇住了。
            hyf教了一次后,印象極其深刻,回路、路徑條數啥的從此再也不用向美國(霧)進口了。
            簡要的說:f[i][j][k]表示在(i,j)這個格子的時候,m+1個插頭的情況是k,然后根據(i,j)左邊和上邊插頭(括號?)的情況進行連接,然后轉移到下一個格子。一個合法的狀態是一個括號表達式,有左括號,右括號和空格,且左右括號匹配。一個左括號和一個相應的右括號表示這兩個地方的路徑是連在一起的。轉移的時候分情況討論。
            處理的時候先把所有合法的狀態都dfs出來,轉移的時候就方便了。。
            PS:居然驚喜地進入了status第一頁?!。。。
            #include <iostream>
            #include <cstdio>
            #include <cstdlib>
            #include <cstring>
            #define MAXN 8
            #define BLANK 0
            #define LEFT 1
            #define RIGHT 2
            #define MAXSTATE 174420
            #define MAXSTATEAMOUNT 835
            #define MAX(a,b) ((a) > (b) ? (a) : (b))
            #define ll long long

            using namespace std;

            int n,m;
            char map[MAXN+1][MAXN+1];
            int nState = 0;
            int State[MAXSTATEAMOUNT+1];
            int id[MAXSTATE+1];
            int Tx, Ty, FinalState;
            ll f[MAXN+1][MAXN+1][MAXSTATEAMOUNT+1];
            ll ans;
            void Reset(){
                 nState = 0, Tx = -1;
                 memset(f, 0, sizeof(f));
                 ans = 0;
            }

            bool Init(){
                 scanf("%d%d",&n,&m);
                 if (!n) return false;
                 Reset();
                 for (int i = n-1; i>=0; i--){
                     scanf("%s", map[i]);
                     if (Tx == -1)
                     for (int j = m-1; j>=0; j--)
                         if (map[i][j] == '.'){
                            Tx = i, Ty = j;
                            break;
                         }
                     for (int j = 0; j<m; j++)
                         if (map[i][j] == '.') map[i][j] = 0;
                         else map[i][j] = 1;
                 }
                 return true;
            }

            void dfs(int pos, int r_bracket, int state){
                 if (pos < 0){
                    State[nState] = state;
                    id[state] = nState;
                    /*
                    printf("%d: ", nState);
                    for (int i = 0; i<=m; i++)
                        printf("%d ", buffer[i]);
                    printf("\n");
                    */
                    nState ++;
                    return;
                 }
                 if (pos >= r_bracket) // blank
                    dfs(pos - 1, r_bracket, (state << 2));
                 if (pos > r_bracket) // right bracket
                    dfs(pos - 1, r_bracket + 1, (state << 2) | RIGHT);
                 if (r_bracket) // left bracket
                    dfs(pos - 1, r_bracket - 1, (state << 2) | LEFT);
            }

            #define MASK 3
            #define Get(state, p) (((state) >> (p<<1)) & MASK)

            inline bool OK(int i, int j, int state){
                 if (Get(state, j) == 1 && Get(state, j+1) == 2 && !(i == Tx && j == Ty)) return false;
                 for (int k = 0; k<j; k++)
                     if ((map[i][k] || map[i+1][k]) && Get(state, k)) return false;
                 if (((j && map[i][j-1]) || (map[i][j])) && Get(state, j)) return false;
                 for (int k = j+1; k<=m; k++)
                     if (((i && map[i-1][k-1]) || (map[i][k-1])) && Get(state, k)) return false;
                 return true;
            }

            inline int Modify(int state, int p, int v){
                return state - (((state >> (p << 1)) & MASK) << (p << 1)) + (v << (p << 1));
            }

            inline int FindRight(int p, int state){
                int cnt = 0, t;
                for (int i = p; i<=m; i++){
                    t = Get(state,i);
                    if (t == 1) cnt++;
                    if (t == 2) cnt--;
                    if (cnt == 0) return i;
                }
                return -1;
            }

            inline int FindLeft(int p, int state){
                int cnt = 0, t;
                for (int i = p; i>=0; i--){
                    t = Get(state, i);
                    if (t == 2) cnt++;
                    if (t == 1) cnt--;
                    if (cnt == 0) return i;
                }
                return -1;
            }

            void Solve(){
                 dfs(m, 0, 0);
                 f[0][0][id[(1 << 2) + (2 << (2 * m))]] = 1;
                 FinalState = (1 << (2 * Ty)) + (2 << (2 * (Ty+1)));
                 int p, q, tmp, tmp2, state, v, i, j, k;
                 ll *a;
                 for (i = 0; i < n; i++){
                     for (j = 0; j < m; j++){
                         a = f[i][j+1];
                         for (k = 0; k < nState; k++)
                             if ((v = f[i][j][k])){
                                 state = State[k];
                                 p = Get(state, j), q = Get(state, j+1);
                                 if (p == 0 && q == 0){
                                    if (!map[i][j]){
                                        tmp = Modify(Modify(state, j, 1), j+1, 2);
                                        if (OK(i, j+1, tmp))
                                           a[id[tmp]] += v;
                                    }else
                                         a[k] += v;
                                 }else if(p == 0){ // conditions below ensured map[i][j] is empty, because there exists at least one bracket on one side of the grid (i,j)
                                       if (OK(i, j+1, state))
                                          a[k] += v;
                                       tmp = Modify(Modify(state, j, q), j+1, 0);
                                       if (OK(i, j+1, tmp))
                                          a[id[tmp]] += v;
                                 }else if (q == 0){
                                       if (OK(i, j+1, state))
                                          a[k] += v;
                                       tmp = Modify(Modify(state, j, 0), j+1, p);
                                       if (OK(i, j+1, tmp))
                                          a[id[tmp]] += v;
                                 }else{
                                     tmp = Modify(Modify(state, j, 0), j+1, 0);
                                     if (p == 1 && q == 1){
                                           tmp2 = Modify(tmp, FindRight(j+1, state), 1);
                                           if (OK(i, j+1, tmp2))
                                              a[id[tmp2]] += v;
                                     }else if (p == 2 && q == 2){
                                           tmp2 = Modify(tmp, FindLeft(j, state), 2);
                                           if (OK(i, j+1, tmp2))
                                              a[id[tmp2]] += v;
                                     }else if (p == 1 && q == 2){
                                           if (i == Tx && j == Ty && state == FinalState){
                                              printf("%I64d\n", v);
                                              return;
                                           }
                                     }else if (p == 2 && q == 1){
                                           if (OK(i, j+1, tmp))
                                              a[id[tmp]] += v;
                                     }
                                 }
                             }
                     }
                     for (int k = 0; k < nState; k++)
                         if (Get(State[k], m) == 0 && OK(i+1, 0, tmp = (State[k] << 2)))
                            f[i+1][0][id[tmp]] += f[i][m][k];
                 }
                 printf("%I64d\n", ans);
            }

            int main(){
                while (Init())
                      Solve();
                return 0;
            }


            posted on 2010-04-10 13:59 TimTopCoder 閱讀(623) 評論(1)  編輯 收藏 引用
            評論:
            • # re: 男人8題-Tony's Tour-PKU1739-基于連通性狀態壓縮的動態規劃。。[未登錄]  hyf Posted @ 2010-04-17 19:51
              膜拜T神  回復  更多評論   

             
            Copyright © TimTopCoder Powered by: 博客園 模板提供:滬江博客
            国产精品热久久毛片| 国产三级久久久精品麻豆三级| 久久久久久狠狠丁香| 7国产欧美日韩综合天堂中文久久久久 | 亚洲欧美日韩中文久久| 无码人妻久久一区二区三区| 久久精品国产91久久综合麻豆自制| 99久久亚洲综合精品网站| 亚洲国产精品无码久久久久久曰| 久久久久久人妻无码| 色综合久久88色综合天天 | 国产精品99精品久久免费| 亚洲另类欧美综合久久图片区| 91精品国产91久久综合| 久久久久国产一区二区| 久久99国产综合精品| 色综合久久久久综合99| 亚洲一区二区三区日本久久九| 亚洲人成网站999久久久综合 | 国产精品久久久久9999高清| 久久亚洲精品无码观看不卡| 国产精品天天影视久久综合网| 久久亚洲AV成人无码软件| 精品久久久久久无码人妻蜜桃| 久久A级毛片免费观看| 欧美国产成人久久精品| 免费精品久久久久久中文字幕| 99久久国产综合精品麻豆| 人妻精品久久久久中文字幕69 | 精品亚洲综合久久中文字幕| 久久综合亚洲欧美成人| 久久久久久久久久久久久久| 久久久久99这里有精品10 | 亚洲综合久久综合激情久久| 无码国产69精品久久久久网站| 亚洲欧洲久久久精品| 女人高潮久久久叫人喷水| 香蕉99久久国产综合精品宅男自 | 久久中文字幕一区二区| 国产精品视频久久久| 亚洲国产精品婷婷久久|