• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.2.2 第一道網(wǎng)絡(luò)流····

            Posted on 2010-03-26 13:04 rikisand 閱讀(428) 評論(0)  編輯 收藏 引用 所屬分類: C/C++USACO

            Drainage Ditches
            Hal Burch

            Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.

            Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Note however, that there can be more than one ditch between two intersections.

            Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

            PROGRAM NAME: ditch
            INPUT FORMAT

            Line 1:
            Two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream.

            Line 2..N+1:
            Each of N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

            SAMPLE INPUT (file ditch.in)
            5 4
            1 2 40
            1 4 20
            2 4 20
            2 3 30
            3 4 10
            
            OUTPUT FORMAT

            One line with a single integer, the maximum rate at which water may emptied from the pond.

            SAMPLE OUTPUT (file ditch.out)
            50
            最基本的網(wǎng)絡(luò)流
               1:  #include<iostream>
               2:  #include<fstream>
               3:  #include<string>
               4:  #include<vector>
               5:  #include<map>
               6:  #include<algorithm>
               7:  #include<sstream>
               8:  #include <cstring>
               9:  #include <queue>
              10:  using namespace std;
              11:  const int MAXN = 220;
              12:  const int infi = 0x7FFFFFFF;
              13:   int capacity[MAXN][MAXN], prenode[MAXN], flow[MAXN];
              14:   queue<int> mq; 
              15:   
              16:  int start, end, N;
              17:  void init(){
              18:      freopen("ditch.in","r",stdin);
              19:      //freopen("e:\\usaco\\ditch.in","r",stdin);
              20:      start = 1;  
              21:      scanf("%d %d",&N,&end); int c, s, t;
              22:      memset(capacity,0,sizeof(capacity));
              23:      for(int i=0;i<N;i++)
              24:      {
              25:          scanf("%d %d %d",&c,&s,&t);
              26:          capacity[c][s] += t; //兩個(gè)節(jié)點(diǎn)間不只有一條路
              27:      } 
              28:  }
              29:  int bfs(){//尋找增廣路徑
              30:      while(!mq.empty()) mq.pop(); 
              31:      mq.push(start);  //源節(jié)點(diǎn)入隊(duì)
              32:      //memset(flow,0,sizeof(flow));
              33:      memset(prenode,-1,sizeof(prenode)); //重置前向節(jié)點(diǎn)
              34:      prenode[start] = 0; flow[start]=infi; //源節(jié)點(diǎn)流量無限大
              35:      while(!mq.empty()){
              36:          int cur = mq.front(); 
              37:          mq.pop();
              38:          if(cur == end) break; //到達(dá)匯點(diǎn)結(jié)束路徑 
              39:          for(int i=1;i<=end;i++){ 
              40:              if(prenode[i]==-1 && capacity[cur][i]) //訪問當(dāng)前節(jié)點(diǎn)所有未訪問的相鄰節(jié)點(diǎn),更新flow
              41:              {
              42:                  prenode[i] = cur;
              43:                  flow[i] = (flow[cur]<capacity[cur][i]?flow[cur]:capacity[cur][i]);
              44:                  mq.push(i);
              45:              }
              46:          }
              47:      }
              48:      if(prenode[end]==-1)  //如果未找到增廣路徑返回-1
              49:          return -1;
              50:      return flow[end];
              51:  }
              52:  int Edmonds_Karp(){
              53:      int total = 0, pathcapacity;//pathcapacity 路徑增加量
              54:      while((pathcapacity = bfs()) != -1){//可以找到增廣路徑時(shí)候進(jìn)行循環(huán)
              55:          int cur = end;    //從匯點(diǎn)開始增加逆向節(jié)點(diǎn)
              56:          while( cur != start ){
              57:              int t = prenode[cur] ;
              58:              capacity[t][cur] -= pathcapacity;
              59:              capacity[cur][t] += pathcapacity;
              60:              cur = t;
              61:          }
              62:          total += pathcapacity;//max_flow
              63:      }
              64:      return total;
              65:  }
              66:  void output(){
              67:      freopen("ditch.out","w",stdout);
              68:      //freopen("c:\\usaco\\ditch.out","w",stdout);
              69:      cout<<Edmonds_Karp()<<endl;
              70:  } 
              71:     int main()
              72:  {
              73:      init();  
              74:      output();
              75:      return 0;
              76:  }

            標(biāo)程:使用貪心法,尋找一條增廣路徑的時(shí)候不斷尋找cap最大的,未被訪問的節(jié)點(diǎn)mloc;然后更新跟mloc相鄰的節(jié)點(diǎn)flow以

            及prenode信息.最后當(dāng)運(yùn)行到end時(shí)候,更新路徑節(jié)點(diǎn)capacity,同時(shí)增加max_flow.重復(fù)上述過程直到找不到增廣路徑

               1:  #include <stdio.h>
               2:  #include <string.h>
               3:   
               4:  #define MAXI 200
               5:   
               6:  /* total drain amount between intersection points */
               7:  int drain[MAXI][MAXI];
               8:  int nint; /* number of intersection points */
               9:   
              10:  int cap[MAXI]; /* amount of flow that can get to each node */
              11:  int vis[MAXI]; /* has this node been visited by Dijkstra's yet? */
              12:  int src[MAXI]; /* the previous node on the path from the source to here */
              13:   
              14:  int augment(void)
              15:   { /* run a Dijkstra's varient to find maximum augmenting path */
              16:    int lv;
              17:    int mloc, max;
              18:    int t;
              19:   
              20:    memset(cap, 0, sizeof(cap));
              21:    memset(vis, 0, sizeof(vis));
              22:   
              23:    cap[0] = 2000000000;
              24:    while (1)
              25:     {
              26:      /* find maximum unvisited node */
              27:      max = 0;
              28:      mloc = -1;
              29:      for (lv = 0; lv < nint; lv++)
              30:        if (!vis[lv] && cap[lv] > max)
              31:         {
              32:          max = cap[lv];
              33:      mloc = lv;
              34:         }
              35:      if (mloc == -1) return 0;
              36:      if (mloc == nint-1) break; /* max is the goal, we're done */
              37:   
              38:      vis[mloc] = -1; /* mark as visited */
              39:   
              40:      /* update neighbors, if going through this node improves the
              41:         capacity */
              42:      for (lv = 0; lv < nint; lv++)
              43:        if (drain[mloc][lv] > cap[lv] && max > cap[lv])
              44:         {
              45:          cap[lv] = drain[mloc][lv];
              46:      if (cap[lv] > max) cap[lv] = max;
              47:      src[lv] = mloc;
              48:         }
              49:     }
              50:    max = cap[nint-1];
              51:   
              52:    /* augment path, starting at end */
              53:    for (lv = nint-1; lv > 0; lv = src[lv])
              54:     {
              55:      t = src[lv];
              56:      drain[t][lv] -= max;
              57:      drain[lv][t] += max;
              58:     }
              59:    return max;
              60:   }
              61:   
              62:  int main(int argc, char **argv)
              63:   {
              64:    FILE *fout, *fin;
              65:    int lv;
              66:    int num;
              67:    int p1, p2, c;
              68:   
              69:    if ((fin = fopen("ditch.in", "r")) == NULL)
              70:     {
              71:      perror ("fopen fin");
              72:      exit(1);
              73:     }
              74:    if ((fout = fopen("ditch.out", "w")) == NULL)
              75:     {
              76:      perror ("fopen fout");
              77:      exit(1);
              78:     }
              79:   
              80:    fscanf (fin, "%d %d", &num, &nint);
              81:    while (num--)
              82:     {
              83:      fscanf (fin, "%d %d %d", &p1, &p2, &c);
              84:      p1--;
              85:      p2--;
              86:      drain[p1][p2] += c; /* note += handles two ditches between same points */
              87:     }
              88:   
              89:    /* max flow algorithm: augment while you can */
              90:    c = 0;
              91:    while ((p1 = augment()))
              92:      c += p1;
              93:    fprintf (fout, "%d\n", c);
              94:    return 0;
              95:   }

             

             

             

             

             

             

             

             

            亚洲国产成人精品91久久久 | 国产成人综合久久精品红| 韩国三级中文字幕hd久久精品| 久久亚洲高清综合| 亚洲精品国精品久久99热一| av无码久久久久不卡免费网站| 日本一区精品久久久久影院| 日本加勒比久久精品| 久久久精品人妻一区二区三区四| 精品久久久久久无码中文字幕一区| 久久久久久久亚洲精品| 97久久香蕉国产线看观看| 久久精品一区二区影院| 久久精品99久久香蕉国产色戒| 久久久久国产一区二区| 久久99国内精品自在现线| 一本色道久久综合狠狠躁篇| 久久综合九色综合欧美狠狠| 久久亚洲美女精品国产精品| 久久综合给合综合久久| 久久99精品国产麻豆宅宅| 久久亚洲精品无码aⅴ大香| 国产L精品国产亚洲区久久| 久久精品午夜一区二区福利| 久久婷婷五月综合成人D啪| 亚洲一本综合久久| 99久久精品日本一区二区免费| 久久国内免费视频| 亚洲国产日韩欧美综合久久| 久久精品99无色码中文字幕| 99久久精品无码一区二区毛片 | 一本大道久久a久久精品综合| 99精品国产99久久久久久97| 亚洲综合久久夜AV | 伊人久久大香线蕉成人| 午夜精品久久久内射近拍高清 | 99久久免费国产精品特黄| 亚洲欧美精品一区久久中文字幕| 免费一级欧美大片久久网| 久久乐国产精品亚洲综合| 久久人人爽人人爽AV片|