• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            TC-srm249-Tableseat-DP-狀態排列

            Posted on 2009-11-12 21:45 rikisand 閱讀(291) 評論(0)  編輯 收藏 引用 所屬分類: TopcoderAlgorithm

            Your restaurant has numTables tables to seat customers. The tables are all arranged in a line. If a large party of customers comes in, a group of adjacent tables will be used. Which group of tables is entirely up to the customer. Since you cannot predict this, assume all possible choices occur with equal probability. What you can predict is the size of each group of customers that arrives. Element i of probs gives the probability, in percent, that an entering party will need i+1 tables. Assuming nobody leaves, return the expected number of tables you will use before a party must be turned away. This only occurs if there is no place to seat them.

            Method signature:
            double getExpected(int numTables, vector <int> probs)

            numTables will be between 1 and 12 inclusive.
            probs will contain between 1 and 12 elements inclusive.
            Each element of probs will be between 0 and 100 inclusive.
            The elements of probs will sum to 100.

             

            misof 數字表達教程里的習題~ 題目大意 求使用桌子的期望。由于到來group的個數不定,每個group需要的桌子不定,使確定期望變得困難。但考慮對于numTables來說,使用桌子的狀態僅僅有 2^numTables種,因此考慮在這些狀態改變的過程中來計算期望,也就是計算在每個狀態下面的期望桌子數目。在每個狀態到達時,依次考慮來了一個group需要k個位子,如果r種安排可以滿足k個位子,那么當前狀態的期望值要加上 來k個位子的概率 X (r種安排分別的期望和 / r) 其中求r中安排期望和則需要 遞歸調用函數。顯然利用memo可以減少重復計算于是有下面的解法:

            vector<double> p;
            double dp[1<<13];   
            int tb;
            double solve(int cur){
                if(dp[cur]>-1.0)return dp[cur];    //memo available
                double ret=0;double sum;int kind;
                for(int i=0;i<p.size();i++){
                    sum=0,kind=0;
                    int mask=(1<<(i+1))-1;    //new group need i+1 adjacent tables
                    for(int j=0;j+i+1<=tb;j++){
                        if((cur&(mask<<j))==0){    //current pattern could meet the need
                            sum+=solve(cur+(mask<<j))+i+1;    //total method ++
                            kind++;
                        }
                    }
                    if(kind!=0)sum/=kind; //caculate the average need
                    ret+=sum*p[i];
                }
                dp[cur]=ret;
                return ret;
            }

                    double getExpected(int numTables, vector <int> probs)
                    {
                            tb=numTables;
                            REP(i,1<<13)dp[i]=-1.0;
                            p.resize(probs.size());
                            for(int i=0;i<probs.size();i++)p[i]=probs[i]*0.01;
                            return solve(0);//the beginning pattern
                    }

            看比賽中有另一種解法,即根據題目,在到達每次fail to serve a group 的時候 根據此時的桌子數量,和到達這種狀態的概率 來計算:

            dp[1<<13][15];memset(dp,0,sizeof(dp));// :D lucily I can do this for 0

            double fails=0.0;bool flag ;

            for(int i=1;i<=numTables+1;i++)  //循環最多numTables+1 次

            {flag=true;

            for(int j=0;j<p.size();j++){

                 int mask=(1<<(j+1))-1;//注意移位運算符的優先級低,注意加括號

                 for(int k=0;k<=(1<<numTables-1);k++){

                      if(dp[k][i-1]<=0.0)continue;

                      flag=false;

                      int cnt=0;

                      for(int m=0;m+j+1<=numTables;m++) if((mask<<m)&k==0)cnt++;

                      if(cnt)for(int m=0;m+j+1<=numTables;m++)if((mask<<m)&k==0)dp[mask<<m|k][i]+=dp[k][i-1]*p[j]/cnt;

                      if(!cnt){

                             int b=k,bn=0;while(b){if(b&1)bn++;b>>=1;}

                             fail+=dp[k][i-1]*bn; 

                     }

                }

            }

            if(flag)return fail;//all dp[][k]==0.0

            }

            return fail;

             

            優先級很容易錯:

            http://www.cppreference.com/wiki/operator_precedence~。~

            典型的幾個

            ++ -- <post-incre-decre>

            ~ <bitwise complement> !<not>&<addresss> *<dereference>&<address>

            *  / %

            + -

            >>  <<

            < <= > >=

            == !=

            &

            ^ xor

            |

            &&

            ||

            ?=

            = += –= <<= >>=

            ,

             

            從上到下依次降低~~~~~~~~~~~~~~~~~~··

             

             

             

             

             

             

             

            久久777国产线看观看精品| 色婷婷狠狠久久综合五月| 久久亚洲精品中文字幕| 久久精品国产亚洲一区二区| 久久久久亚洲爆乳少妇无| 久久人人爽人人爽人人片AV高清 | 思思久久99热免费精品6| 久久无码中文字幕东京热| www性久久久com| 国产精品乱码久久久久久软件| 久久A级毛片免费观看| 久久久久无码专区亚洲av| 午夜不卡久久精品无码免费| 久久精品国产色蜜蜜麻豆| 久久久久久夜精品精品免费啦| 青青热久久国产久精品 | 国产福利电影一区二区三区久久老子无码午夜伦不 | 精品久久久久久成人AV| 欧美伊人久久大香线蕉综合| 久久久久国产精品麻豆AR影院| 无码人妻久久久一区二区三区| 亚洲精品tv久久久久| 看全色黄大色大片免费久久久| 久久最近最新中文字幕大全 | 久久人人爽人人爽人人片AV高清| 精品久久久久久国产三级| 久久99毛片免费观看不卡| 久久精品无码午夜福利理论片| 久久无码专区国产精品发布| 国产精品久久新婚兰兰| 狠狠色丁香久久婷婷综合蜜芽五月| 国产高清美女一级a毛片久久w | 午夜不卡888久久| 亚洲嫩草影院久久精品| 青青青国产精品国产精品久久久久 | 久久丫忘忧草产品| 久久青青色综合| 久久免费看黄a级毛片| 亚洲色大成网站www久久九| 亚洲伊人久久精品影院| 亚洲国产欧美国产综合久久|