• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            [USACO 09NOV] silver xoinc [dp]

            Posted on 2009-11-12 00:20 rikisand 閱讀(510) 評(píng)論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO

            周六第一次做usaco玩,bronze的輕松切掉,然后申請(qǐng)promote,下午批準(zhǔn),話說rob 效率好高啊~ 于是繼續(xù)做silver 就遇到這個(gè)題- -!糾結(jié)了半天放棄····知道是dp 也考慮了方法就是 理不清楚;不知道是不是一天沒吃飯的緣故·····

            今天題解出來了~ 先看了大概思路 然后自己寫出來了~

            題目:

            Farmer John's cows like to play coin games so FJ has invented with
            a new two-player coin game called Xoinc for them.
            
            Initially a stack of N (5 <= N <= 2,000) coins sits on the ground;
            coin i from the top has integer value C_i (1 <= C_i <= 100,000).
            The first player starts the game by taking the top one or two coins
            (C_1 and maybe C_2) from the stack. If the first player takes just
            the top coin, the second player may take the following one or two
            coins in the next turn. If the first player takes two coins then
            the second player may take the top one, two, three or four coins
            from the stack. In each turn, the current player must take at least
            one coin and at most two times the amount of coins last taken by
            the opposing player. The game is over when there are no more coins
            to take.
            
            Afterwards, they can use the value of the coins they have taken
            from the stack to buy treats from FJ, so naturally, their purpose
            in the game is to maximize the total value of the coins they take.
            Assuming the second player plays optimally to maximize his own
            winnings, what is the highest total value that the first player can
            have when the game is over?
            
            MEMORY LIMIT: 20 MB
            
            PROBLEM NAME: xoinc
            
            INPUT FORMAT:
            
            * Line 1: A single integer: N
            
            * Lines 2..N+1: Line i+1 contains a single integer: C_i
            
            SAMPLE INPUT (file xoinc.in):
            
            5
            1
            3
            1
            7
            2
            簡(jiǎn)單來說就是兩個(gè)人輪流取coins,每個(gè)人每次取得個(gè)數(shù)為1- 2*n;n為上一輪對(duì)方取得數(shù)目,
            求兩個(gè)人都是用最佳策略,先取得那個(gè)家伙最多能拿到多少硬幣。貌似可以算是簡(jiǎn)單博弈論的思想
            思路:
                    coins[1···N] 從下到上 sum[1···N] 剩下 i個(gè)的和
                    找到無后效性的子問題。考慮在還剩下p個(gè)錢幣時(shí)候的情況,此時(shí)可以拿k個(gè)錢
            由于條件,k的大小受上一輪拿的個(gè)數(shù)i的限制 ,所以我們要加上一個(gè)變量i。得到
            dp[p][i]這個(gè)子問題。那么容易得到
            dp[p][i]=max(1=<k<=i*2){SuM(p to p-k+1)+SuM(p-k to 1)-dp[p-k][k]}
                        =max(1=<k<=i*2){sum[p]-dp[p-k][k]}
            按照這個(gè)可以得到一個(gè)O(N^3)的算法

            oidsolve(){
              
            for(inti=1;i<=N;i++)
            //剩下i個(gè)
                   
            for(intj=1;j<=N;j++)
            //上一人拿了j 個(gè)
                       
            for(intk=1;k<=j*2&&i-k>=0
            ;k++){
                            dp[i][j]=max(dp[i][j],sum[
            1]-sum[i+1
            ]-dp[i-k][k]);
                        }
                ret=dp[N][
            1
            ];
            }

             三重遞歸 ,最多可以過500的數(shù)據(jù)量  觀察可以得出 dp[p][j] 和 dp[p][j+1] 的計(jì)算有很多的重疊
            因?yàn)?上次拿了j+1 則可以比 dp[p][j] 多拿 2 個(gè) 

            然后,由于考慮j的范圍 應(yīng)該為 N-i+1

            這樣得到了最終代碼:

            scanf("%d",&N);
            for(int i=1;i<=N;i++)    scanf("%d",coins+i);//{fin>>coins[i]; }
            sum[0]=0;
            for(int i=1;i<=N;i++)     sum[i]=sum[i-1]+coins[N-i+1]; 
            for(int i=1;i<=N;i++)        //剩下i個(gè)
            for(int j=1;j<= N-i +1;j++){ // 上次拿了j個(gè)
            if(dp[i][j]<dp[i][j-1])dp[i][j]=dp[i][j-1];
            if(2*j-1<=i&&dp[i][j]<sum[i]-dp[i-2*j+1][2*j-1]) dp[i][j]=sum[i]-dp[i-2*j+1][2*j-1];
            if(2*j<=i&&dp[i][j]<sum[i]-dp[i-2*j][2*j]) dp[i][j]= sum[i]-dp[i-2*j][2*j];
            }
            printf("%d\n",dp[N][1]);

            很晚了 ,先寫這么多 ,有空把bronze的寫了

            3個(gè)月后注:事實(shí)證明,當(dāng)時(shí)么有時(shí)間 ~以后更沒有時(shí)間 ~~~ hoho`````````~~~~~~~``````````

            性欧美丰满熟妇XXXX性久久久| 久久久久亚洲国产| 久久精品国产AV一区二区三区| 亚洲欧洲久久久精品| 狠狠色丁香久久婷婷综合图片| 国产成人无码精品久久久性色| 精品精品国产自在久久高清| 91超碰碰碰碰久久久久久综合| 欧美成人免费观看久久| 国内精品人妻无码久久久影院| 国产综合精品久久亚洲| 狠狠精品久久久无码中文字幕| 国产精品久久久久影院嫩草| 狠狠色丁香婷婷久久综合 | 亚洲熟妇无码另类久久久| 精品久久久久久综合日本| 久久笫一福利免费导航| 日本道色综合久久影院| 99蜜桃臀久久久欧美精品网站| 久久99热这里只有精品国产 | 久久久久亚洲AV成人网人人网站| 国产成年无码久久久久毛片| 久久无码高潮喷水| 午夜精品久久久久久| 99久久久久| 国产精品99久久久久久董美香| 亚洲av伊人久久综合密臀性色| 久久婷婷五月综合成人D啪| 国产99久久九九精品无码| 久久精品国产亚洲AV无码麻豆| 久久丫忘忧草产品| 无码人妻少妇久久中文字幕 | 97久久国产亚洲精品超碰热| 久久男人Av资源网站无码软件| 无码国内精品久久人妻麻豆按摩| 日韩美女18网站久久精品| 久久精品国产精品亚洲下载| 国产成人精品久久综合| 精品欧美一区二区三区久久久| 久久综合九色综合久99| 久久996热精品xxxx|