• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            是塵封已久的記憶再次融化 是堆積心底的烈火再次燃燒 是直覺讓我來到這久違的大地 是信念讓我開始了新的征途 在硝煙中我得到了成長 在傷痛中我學會了堅強 在沉默中我明白了等待 在孤獨中我體味了感傷 并不是我不懂得眼淚 并不是我只知道使命 在內(nèi)心深處我同你一樣火熱 在我的眼中也有著多情的淚光 也許我的生命如落葉般短暫 也許我只是歲月長河中的一個過客 但我對自己所做的一切無怨無悔 因為我品嘗到了那最后一刻的淚光
            隨筆-6  評論-24  文章-8  trackbacks-0
            (1)motion and structure
            sba_motstr_levmar()
            , sba_motstr_levmar_x():
            Resp. simple and expert driver for full motion and structure BA.
          1. (2)only motion
            sba_mot_levmar(), sba_mot_levmar_x():
            Resp. simple and expert driver for motion only BA. Strictly speaking, this is not BA since structure is kept unmodified. However, this function is very useful when dealing with problems involving camera resectioning, i.e. pose estimation from known 3D-2D correspondences.
          2. (3)only structure
            sba_str_levmar()
            , sba_str_levmar_x():
            Resp. simple and expert driver for structure only BA. Again, this is not real BA since motion is kept unmodified. This function can, for example, be useful when dealing with intersection problems, i.e. reconstructing 3D points seen in a set of extrinsically calibrated images.

            /* simple drivers */
            extern int
            sba_motstr_levmar(
            const int n, const int m, const int mcon, char *vmask, double *p, const int cnp, const int pnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*proj)(int j, int i, double *aj, double *bi, double *xij, void *adata),
                       
            void (*projac)(int j, int i, double *aj, double *bi, double *Aij, double *Bij, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);

            extern int
            sba_mot_levmar(
            const int n, const int m, const int mcon, char *vmask, double *p, const int cnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*proj)(int j, int i, double *aj, double *xij, void *adata),
                       
            void (*projac)(int j, int i, double *aj, double *Aij, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);

            extern int
            sba_str_levmar(
            const int n, const int m, char *vmask, double *p, const int pnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*proj)(int j, int i, double *bi, double *xij, void *adata),
                       
            void (*projac)(int j, int i, double *bi, double *Bij, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);


            /* expert drivers */
            extern int
            sba_motstr_levmar_x(
            const int n, const int m, const int mcon, char *vmask, double *p, const int cnp, const int pnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
                       
            void (*fjac)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);

            extern int
            sba_mot_levmar_x(
            const int n, const int m, const int mcon, char *vmask, double *p, const int cnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
                       
            void (*fjac)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);

            extern int
            sba_str_levmar_x(
            const int n, const int m, char *vmask, double *p, const int pnp,
                       
            double *x, double *covx, const int mnp,
                       
            void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
                       
            void (*fjac)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
                       
            void *adata, const int itmax, const int verbose, const double opts[SBA_OPTSSZ], double info[SBA_INFOSZ]);

            /* Bundle adjustment on camera and structure parameters 
             * using sparse Levenberg-Marquardt
             *
             * Returns the number of iterations (>=0) if successfull, SBA_ERROR if failed
             
            */


            int sba_motstr_levmar_x(
                
            const int n,   /* number of points */
                
            const int ncon,/* number of points (starting from the 1st) whose parameters should not be modified.
                               * All B_ij (see below) with i<ncon are assumed to be zero
                               
            */

                
            const int m,   /* number of images */
                
            const int mcon,/* number of images (starting from the 1st) whose parameters should not be modified.
                                          * All A_ij (see below) with j<mcon are assumed to be zero
                                          
            */

                
            char *vmask,  /* visibility mask: vmask[i, j]=1 if point i visible in image j, 0 otherwise. nxm */
                
            double *p,    /* initial parameter vector p0: (a1, , am, b1, , bn).
                               * aj are the image j parameters, bi are the i-th point parameters,
                               * size m*cnp + n*pnp
                               
            */

                
            const int cnp,/* number of parameters for ONE camera; e.g. 6 for Euclidean cameras */
                
            const int pnp,/* number of parameters for ONE point; e.g. 3 for Euclidean points */
                
            double *x,    /* measurements vector: (x_11^T, .. x_1m^T, , x_n1^T, .. x_nm^T)^T where
                               * x_ij is the projection of the i-th point on the j-th image.
                               * NOTE: some of the x_ij might be missing, if point i is not visible in image j;
                               * see vmask[i, j], max. size n*m*mnp
                               
            */

                
            double *covx, /* measurements covariance matrices: (Sigma_x_11, .. Sigma_x_1m, , Sigma_x_n1, .. Sigma_x_nm),
                               * where Sigma_x_ij is the mnp x mnp covariance of x_ij stored row-by-row. Set to NULL if no
                               * covariance estimates are available (identity matrices are implicitly used in this case).
                               * NOTE: a certain Sigma_x_ij is missing if the corresponding x_ij is also missing;
                               * see vmask[i, j], max. size n*m*mnp*mnp
                               
            */

                
            const int mnp,/* number of parameters for EACH measurement; usually 2 */
                
            void (*func)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata),
                                                          
            /* functional relation describing measurements. Given a parameter vector p,
                                                           * computes a prediction of the measurements \hat{x}. p is (m*cnp + n*pnp)x1,
                                                           * \hat{x} is (n*m*mnp)x1, maximum
                                                           * rcidxs, rcsubs are max(m, n) x 1, allocated by the caller and can be used
                                                           * as working memory
                                                           
            */

                
            void (*fjac)(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata),
                                                          
            /* function to evaluate the sparse Jacobian dX/dp.
                                                           * The Jacobian is returned in jac as
                                                           * (dx_11/da_1, , dx_1m/da_m, , dx_n1/da_1, , dx_nm/da_m,
                                                           *  dx_11/db_1, , dx_1m/db_1, , dx_n1/db_n, , dx_nm/db_n), or
                                                           * (using HZ's notation),
                                                           * jac=(A_11, B_11, , A_1m, B_1m, , A_n1, B_n1, , A_nm, B_nm)
                                                           * Notice that depending on idxij, some of the A_ij and B_ij might be missing.
                                                           * Note also that A_ij and B_ij are mnp x cnp and mnp x pnp matrices resp. and
                                                           * should be stored in jac in row-major order.
                                                           * rcidxs, rcsubs are max(m, n) x 1, allocated by the caller and can be used
                                                           * as working memory
                                                           *
                                                           * If NULL, the Jacobian is approximated by repetitive func calls and finite
                                                           * differences. This is computationally inefficient and thus NOT recommended.
                                                           
            */

                
            void *adata,       /* pointer to possibly additional data, passed uninterpreted to func, fjac */ 

                
            const int itmax,   /* I: maximum number of iterations. itmax==0 signals Jacobian verification followed by immediate return */
                
            const int verbose, /* I: verbosity */
                
            const double opts[SBA_OPTSSZ],
                                   
            /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \epsilon4]. Respectively the scale factor for
                                    * initial \mu, stopping thresholds for ||J^T e||_inf, ||dp||_2, ||e||_2 and (||e||_2-||e_new||_2)/||e||_2
                                    
            */

                
            double info[SBA_INFOSZ]
                                   
            /* O: information regarding the minimization. Set to NULL if don't care
                                    * info[0]=||e||_2 at initial p.
                                    * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                                    * info[5]= # iterations,
                                    * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                                    *                                 2 - stopped by small dp
                                    *                                 3 - stopped by itmax
                                    *                                 4 - stopped by small relative reduction in ||e||_2
                                    *                                 5 - stopped by small ||e||_2
                                    *                                 6 - too many attempts to increase damping. Restart with increased mu
                                    *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values; a user error
                                    * info[7]= # function evaluations
                                    * info[8]= # Jacobian evaluations
                                    * info[9]= # number of linear systems solved, i.e. number of attempts for reducing error
                                    
            */

            )


            image stitching often used function sba_motstr_levmar_x
          3. posted on 2011-01-28 10:55 noBugnoGain 閱讀(1041) 評論(1)  編輯 收藏 引用 所屬分類: 圖像處理

            評論:
            # re: SBA 主要函數(shù)介紹 2013-01-23 16:47 | redhat126
            image stitching often used function sba_motstr_levmar_x
            請問具體如何曹操才能完成兩張圖的H矩陣優(yōu)化呢?
              回復  更多評論
              
            99国产精品久久| 要久久爱在线免费观看| 99久久成人国产精品免费| 婷婷久久综合九色综合98| 久久青青草原精品国产软件| 伊人久久大香线蕉亚洲| 一级做a爰片久久毛片人呢| 波多野结衣久久精品| 久久青青草原精品影院| 日本WV一本一道久久香蕉| 91精品国产高清久久久久久国产嫩草 | 久久亚洲精品无码AV红樱桃| 99久久国产亚洲高清观看2024| 久久亚洲AV无码精品色午夜| 亚洲成色999久久网站| 亚洲AV无一区二区三区久久 | 精品久久久久久中文字幕| 久久亚洲国产精品123区| 日本精品久久久中文字幕| 久久精品国产99久久无毒不卡| 亚洲欧洲中文日韩久久AV乱码| 91久久福利国产成人精品| 一级a性色生活片久久无少妇一级婬片免费放| 无码国产69精品久久久久网站| 亚洲欧美久久久久9999| 国内精品久久久久久久97牛牛| 欧美成a人片免费看久久| 久久99精品国产99久久| 国产精品久久久久国产A级| 国产激情久久久久久熟女老人| 中文精品久久久久人妻| 久久一区二区免费播放| 亚洲欧美一级久久精品| 污污内射久久一区二区欧美日韩 | A级毛片无码久久精品免费| 久久久久精品国产亚洲AV无码| 久久久久久国产精品美女| 久久精品无码一区二区三区日韩| 久久久久亚洲AV无码专区桃色| 久久青青草原精品国产不卡| 国产成人综合久久精品红|