• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            superman

            聚精會神搞建設(shè) 一心一意謀發(fā)展
            posts - 190, comments - 17, trackbacks - 0, articles - 0
               :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            ZOJ 1102 - Phylogenetic Trees Inherited

            Posted on 2008-04-06 11:13 superman 閱讀(433) 評論(0)  編輯 收藏 引用 所屬分類: ZOJ

            Official Solution:

            Problem G: Phylogenetic Trees Inherited

            The first thing to observe is that the different positions in every sequence are independent of each other. This reduces the tree of sequences to a tree of amino acids. At the root of the tree, or for that matter of any sub-tree, there may be many possible amino acids leading to optimal costs. Suppose, you have calculated for two sub-trees Tl and Tr the sets of amino-acids leading to optimal costs Al and Ar. Adjacent sub-trees Tl and Tr have as their father the node T. Now you want to find the set of amino-acids A that you can mark T with, leading to optimal costs for T.

            There are two cases: if the intersection of Al with Ar is non-empty, define A as just this intersection, otherwise define A to be the union of Al and Ar. To see why this is true, observe the extra costs you get, when you assemble T from Tl and Tr. In the first case, you have 0 extra costs when you take an amino-acid from the intersection, but 1 or 2 extra costs when you do not. In the second case, you have 1 extra costs when you take an amino-acid from the union, but 2 extra-costs when you do not. Now, you may want to assemble T not from Tl and Tr but from some other sub-optimal trees. As you can easily verify, this leads to sub-optimal costs for T as well.

            This reasoning is carried over straightforwardly to an induction proof and leads to a dynamic programming solution. Since the amino-acids are upper-case letters, you can represent sets of amino-acids as ints. The set operations you need are then easily performed as bitwise and respectively or. Whenever you do a union operation, your costs increase by 1.

            Another, more straight-forward solution is to calculate for each node of the tree the optimal costs for every amino acid the node can be marked with. This is done by trying every possible combination of amino acids for the two sub-trees, assuming their optimal costs have already been calculated. Since this solution might turn out to be too inefficient, it can be improved upon by observing that a father node always can be marked with either the left or the right son's amino-acid - there is no need to take an amino acid that differs from both.

            Judges' test data was constructed from a test-case with a few long sequences, a test-case with many short sequences, a test-case where every possible pair of amino-acids occured, and 100 random-generated test-cases where length and number of sequences are geometrically distributed. The total number of test-cases is 110. Since there may be multiple correct answers for the test cases, a special verification program was written by slightly modifying the judges' solution.


             1 /* Accepted 1102 C++ 00:00.56 1040K */
             2 #include <string>
             3 #include <iostream>
             4 
             5 using namespace std;
             6 
             7 int main()
             8 {
             9     int n, l;
            10     while((cin >> n >> l) && n && l)
            11     {
            12         int heap[2048], cost = 0;
            13         string seq[1024];
            14         
            15         for(int i = 0; i < n; i++)
            16             cin >> seq[i];
            17         
            18         for(int i = 0; i < l; i++)
            19         {
            20             for(int k = 0; k < n; k++)
            21                 heap[n + k] = 1 << (seq[k][i] - 'A');
            22             for(int k = n - 1; k >= 1; k--)
            23                 if((heap[k] = heap[2 * k] & heap[2 * k + 1]) == 0)
            24                 {
            25                     cost++;
            26                     heap[k] = heap[2 * k] | heap[2 * k + 1];
            27                 }
            28             char c = 'A';
            29             while(heap[1>>= 1)
            30                 c++;
            31             cout << c;
            32         }
            33         cout << ' ' << cost << endl;
            34     }
            35     
            36     return 0;
            37 }
            38 
            久久无码国产| 青草影院天堂男人久久| 人妻无码αv中文字幕久久琪琪布| 久久精品国产亚洲AV忘忧草18 | 久久久久久综合一区中文字幕| 久久免费视频网站| 国产香蕉久久精品综合网| 国产成人精品久久二区二区| 久久无码人妻精品一区二区三区| 日本强好片久久久久久AAA| 激情综合色综合久久综合| 伊人久久大香线蕉亚洲五月天| 久久青青草原国产精品免费| 伊人久久大香线焦AV综合影院 | 青青久久精品国产免费看| 久久夜色精品国产欧美乱| 色婷婷狠狠久久综合五月| 亚洲国产成人久久综合一| 亚洲中文久久精品无码| 无码8090精品久久一区| 国产叼嘿久久精品久久| 久久夜色tv网站| 国产精品久久久久久吹潮| 99久久国产综合精品女同图片| 久久久久国产精品麻豆AR影院| 青青青伊人色综合久久| 久久精品国产亚洲av麻豆小说| 久久91精品国产91| 亚洲第一永久AV网站久久精品男人的天堂AV| 99久久中文字幕| 亚洲成色999久久网站| 一本久久a久久精品综合夜夜| 天天综合久久久网| 国产精品亚洲美女久久久| 国产一区二区三精品久久久无广告| 久久99免费视频| 国产精品久久久久久福利69堂| 国产精品视频久久久| 久久99精品国产一区二区三区| 久久精品国产免费一区| 久久久久国产一区二区三区|