• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Why so serious? --[NKU]schindlerlee

            2009年11月25日星期三.sgu106

            2009年11月25日星期三.sgu106
            這題終于過了......
            太容易錯了
            忘了sgu是ms win,用%lld錯了十幾次,干脆cin就得了,I64d在linux又編譯不了

            106. The equation

            There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how
            many integer roots of this equation are satisfy to the following conditions :
            x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers
            (x,y).

            Input
            Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks.
            All numbers are not greater than 108 by absolute value.

            Output
            Write answer to the output.

            Sample Input
            1 1 -3
            0 4
            0 4
            Sample Output
            4

            首先在開始正式講解之前我要說,原來除法不一定是下取整的。。。。
            比如 1 / 2 = 0
            但是-1 / 2 = 0;

            所以我們要自己寫上取整和下取整的函數
            看到zzy的一個寫法,很不錯,見代碼中的upper和lower

            直線可以寫成參數方程的模式
            L1: p0 + t * v; t為實數,v 為直線的方向向量

            ax + by + c = 0;
            首先可以把c移到右邊
            ax + by = -c;
            知道a,b可以利用擴展歐幾里德公式求出p0和d,(d = gcd(a,b))
            如果c不能整除d的話就沒有整數解,這點是顯然的,可以簡單思考一下.

            另外通過直線的幾何意義可以知道
            v = (b ,-a)或
            v = (-b, a)
            取其中一個即可
            tx = (x - x0)/b;
            ty = (y - y0)/-a;

            通過兩個去見求出tmin,tmax,之后
            ans = tmax - tmin + 1就是結果,如果ans < 0 就是無解

            此題破例貼代碼
             1 
             2 LL ans = 0;
             3 LL kmin = -300000000000000000LL, kmax = 300000000000000000LL;
             4 
             5 LL ext_gcd(LL a, LL b, LL & x, LL & y)
             6 {
             7     if (b == 0) {
             8         x = 1;
             9         y = 0;
            10         return a;
            11     } else {
            12         LL d = ext_gcd(b, a % b, x, y);
            13         LL t = x;
            14         x = y;
            15         y = t - a / b * y;
            16         return d;
            17     }
            18 }
            19 
            20 LL upper(LL a, LL b)
            21 {
            22     if (a <= 0)
            23         return a / b;;
            24     return (a - 1/ b + 1;
            25 }
            26 
            27 LL lower(LL a, LL b)
            28 {
            29     if (a >= 0)
            30         return a / b;
            31     return (a + 1/ b - 1;
            32 }
            33 
            34 void update(LL L, LL R, LL a)
            35 {
            36     if (a < 0) {
            37         L = -L;
            38         R = -R;
            39         a = -a;
            40         swap(L, R);
            41     }
            42     kmin = max(kmin, upper(L, a));
            43     kmax = min(kmax, lower(R, a));
            44 }
            45 
            46 int main()
            47 {
            48     LL a, b, c, x1, x2, y1, y2, x0, y0;
            49     cin >> a >> b >> c >> x1 >> x2 >> y1 >> y2; // sgu 是ms win,應該用%I64d,我錯了20幾次才發現.
            50     c = -c,ans = 0;
            51     if (a == 0 && b == 0) {
            52         if (c == 0)
            53             ans = (LL) (x2 - x1 + 1* (y2 - y1 + 1);
            54     } else if (a == 0) {
            55         LL t = c / b;
            56         ans = (c % b == 0 && t <= y2 && t >= y1) * (x2 - x1 + 1);
            57     } else if (b == 0) {
            58         LL t = c / a;
            59         ans = (c % a == 0 && t <= x2 && t >= x1) * (y2 - y1 + 1);
            60     } else {
            61         LL d = ext_gcd(a, b, x0, y0);
            62         if (c % d == 0) {
            63             LL p = c / d;
            64             update(x1 - p * x0, x2 - p * x0, b / d);
            65             update(y1 - p * y0, y2 - p * y0, -/ d);
            66             ans = kmax - kmin + 1;
            67             if (ans < 0) ans = 0;
            68         }
            69     }
            70     cout << ans << endl;
            71     return 0;
            72 }
            73 
            74 


            posted on 2009-11-25 22:10 schindlerlee 閱讀(1380) 評論(0)  編輯 收藏 引用 所屬分類: 解題報告

            精品午夜久久福利大片| 久久精品国产亚洲AV香蕉| 国产99久久久久久免费看| 久久精品国产亚洲沈樵| 亚洲欧洲久久久精品| 久久精品国产亚洲av瑜伽| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 99久久无码一区人妻a黑| 精品少妇人妻av无码久久| 久久经典免费视频| 久久发布国产伦子伦精品 | 亚洲精品无码久久久影院相关影片| 国内精品伊人久久久久影院对白| 亚洲精品国精品久久99热| 青青青青久久精品国产h| 久久综合鬼色88久久精品综合自在自线噜噜 | 国产精品久久影院| 国产免费久久精品99re丫y| 中文精品久久久久国产网址 | 久久99国产精品久久99小说| 99久久夜色精品国产网站| 久久人人爽人人精品视频| 久久人妻少妇嫩草AV蜜桃| 亚洲午夜久久久精品影院| 一本久久免费视频| 97精品久久天干天天天按摩| 91精品国产91久久久久久青草| 久久青青草原精品国产软件| 色综合久久久久无码专区| 国产成人精品久久一区二区三区av | 亚洲色欲久久久综合网东京热| 国内精品久久久久影院老司| 国产麻豆精品久久一二三| 国产精品久久影院| AA级片免费看视频久久| 一本色道久久综合亚洲精品| 久久天天躁狠狠躁夜夜2020| 久久综合欧美成人| 久久综合中文字幕| 久久综合综合久久97色| 久久国产精品一区二区|